Cho tam giác ABC bên trong tam giác lấy 1 điểm bất kì cm MB+MC <BC
Cho tam giác đêỳ ABC, M là 1 điểm bất kì nằm bên trong tam giác. Dựng P thuộc AB, Q thuộc AC sao cho MP//BC và MQ//AB
a) CM rằng APMQ là hình thang cân
b) CM rằng MB + MC > MA
Cho tam giác ABC cân tại A . Lấy điểm M bất kì phía trong tam giác sao cho góc AMB> góc AMC. Chứng minh MB>MC
Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Cho tam giác ABC đều. M là điểm bất kì trong tam giác
chứng minh rằng: MA, MB, MC thỏa mãn bất đẳng thức tam giác
Cho tam giác ABC và M là một điểm bất kì thuộc miền trong của tam giác
a) CM MB+MC<AB+DC
b) Áp dụng câu a) CM : P<MA+MB+MC<2P
Trong đó \(\frac{AB+BC+CA}{2}\)là nửa chu vi tam giác ABC
Cho tam giác ABC. Gọi M là điểm bất kì nằm trong tam giác. C/m MA + MB + MC < chu vi tam giác ABC
Cho tam giác ABC và điểm M bất kì nằm trong tam giác đó. Chứng Minh rằng : MB+MC<AB+AC
ham khảo nek:
https://h.vn/hoi-dap/question/211959.html
# mui #
Cho tam giác ABC có AD là phân giác trong của tam giác (D thuộc BC). Lấy M bất kì thuộc AD.
CMR: |MB - MC| < |AB - AC|
cho tam giac ABC. goi M la một điểm bất kì trong tam giác. CMR tổng MA+MB+MC
a) lớn hơn nửa chu vi tam giác ABC
b) nho hon chu vi tam giác ABC
cho tam giác đều abc cạnh a, M là điểm bất kì trong tam giác. CMR MA+MB+MC>a\(\sqrt{3}\)/2
Cho tam giác ABC nhọn và M là điểm bất kì nằm trong tam giác. Tìm GTNN của biểu thức:
T = MA . BC + MB . CA + MC . AB
Gọi \(I\)là giao điểm của \(BC\)và \(AM\)còn \(H\)và \(K\)theo thứ tự là hình chiếu của \(B\)và \(C\)trên \(AM\)
Ta có: \(BI\ge BH\)và \(CI\ge CH\)( quan hệ đường xiên - đường vuông góc )
Đẳng thức xảy ra khi \(AM\perp BC\)
Suy ra:
\(MA.BC=MA.\left(BI+BC\right)\ge MA.\left(BH+CK\right)\)
\(\Leftrightarrow MA.BC\ge MA.BH+MA.CK\)
\(\Leftrightarrow MA.BC\ge2S_{MAB}+2S_{MCA}\) \(\left(1\right)\)
Chứng minh tương tự ta cũng có: \(\Leftrightarrow MA.BC\ge2S_{MAB}+2S_{MCA}\) \(\left(2\right)\)
( Đẳng thức xảy ra khi \(MB\perp CA\))
\(MC.AB\ge2S_{MCA}+2S_{MBC}\) \(\left(3\right)\)
Cộng từng vế với ba bất đẳng thức \(\left(1\right)\)và \(\left(2\right)\)và \(\left(3\right)\)ta được:
\(MA.BC+MB.CA+MC.AB\ge4.\left(S_{MAB}+S_{MCA}+S_{ABC}\right)\)
Đặt \(S=S_{ABC}\)thì \(S\)không đổi và \(T\ge4S\)
Vậy: \(T_{min}=4S\)khi \(M\)là trực tâm \(\Delta ABC\)
Dựng hình bình hành AMBN. Lúc đó \(MA.BC=BN.BC\ge2S_{BCN};MB.CA\ge2S_{CAN}\)
Suy ra \(MA.BC+MB.CA\ge2\left(S_{BCN}+S_{CAN}\right)=2\left(S_{ABC}+S_{AMB}\right)\) (Vì tứ giác AMBN là hình bình hành)
Tương tự: \(MB.CA+MC.AB\ge2\left(S_{ABC}+S_{BMC}\right);MC.AB+MA.BC\ge2\left(S_{ABC}+S_{CMA}\right)\)
Do vậy \(2\left(MA.BC+MB.CA+MC.AB\right)\ge2\left(3S_{ABC}+S_{AMB}+S_{BMC}+S_{CMA}\right)=8S_{ABC}\)
Suy ra \(2T\ge8S_{ABC}\Rightarrow T\ge4S_{ABC}.\)
Dấu "=" xảy ra khi và chỉ khi BN vuông góc BC, AN vuông góc AC <=> M là trực tâm \(\Delta\)ABC.