chứng minh:11...111(n chữ số) chia hết cho 41 và n chia hết cho 5
Chứng minh : tổng của các số có 5 chữ số khác nhau chia hết cho 10 chia hết cho 1111.
CHỈ DÀNH CHO NHỮNG NGƯỜI CÓ IQ CAO : CHỨNG MINH TỔNG CỦA CÁC SỐ CÓ N CHỮ SỐ KHÁC NHAU CHIA HẾT CHO 10 ( 1 < N < 11 ) CHIA HẾT CHO 111...111 ( N - 1 CHỮ SỐ 1 ).
Đó là số 55555 vì :
55555 : 10 = 55555
55555 : 11111 = 5
bài 1: cho biết các số tự nhiên a và 6a có tổng các chữ số giống nhau.. chứng minh rằng a chia hết cho 9
bài 2: chứng minh rằng với mọi số tự nhiên n ta có:
a) n. ( n+2) . (n+7) chia hết cho 3
b) 5^n -1 chia hết cho 4
c)n^2+n.5 không chia hết cho 7
bài 3:chứng minh rằng số 111....111 +8n chia hết cho 9( số 111...111 có n chữ số 1)
Chứng minh rằng :
a)với mọi n thuộc N thì A=8*n+11..11 chia hết cho 9 (11...111 có n chữ số 1 )
b)Với mọi a,b,n thuộc N thì B=(10n-1)*a+(11..111-n)*b chia hết cho 9 (111..111 có n chữ số 1)
c)888...88-9=n chia hết cho 9 (888..888 có n chữ số 8)
Chứng minh rằng
2n+111...11 ( n chữ số 1) chia hết cho 5
n=1
2.1+1 chia hết cho 5
toán học trên sao hỏa
n =1
2 x 1 +1 chia hết cho 5
ko biết có đúng ko nữa
nếu sai thì sửa cho mk nhaI love you
1. a, Cho B = 3 + 3^3 + 3^5 +...+ 3^1991. Chứng minh rằng: B chia hết cho 3 ; B chia hết cho 41
b, Chứng minh rằng: (99^5 - 98^4 - 97^3 - 96^3) chia hết cho 2, cho 5.
c, A = 999993^1999 - 555557^1997. Chứng minh: A chia hết cho 5.
d, A = 8n + 111..1 ( n chữ số 1 ). Chứng minh: A chia hết cho 9.
e, Cho ( abc + deg ) chia hết cho 37. Chứng minh: abcd chia hết chio 37.
2. Tìm 2 số biết rằng tổng của chúng gấp 7 lần hiệu của chúng, còn tích của chúng gấp 192 lần hiệu của chúng.
3. Tìm số nhỏ hơn 100, biết rằng khi chia số đó cho 5 thì được dư là 3, chia cho 11 dư 5.
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
1.Chứng minh trong tất cả các số tự nhiên có 4 chữ số có số chia hết cho 4;9 và 125
2.Tìm số tự nhiên n nhỏ nhất sao cho n =11....11 chia hết cho 41
CMR:11111...11(n chữ số 1) chia hết cho 41 và n chia hết cho 5
1/Chứng minh rằng với e thuộc N , thì các số sau chia hết cho 9 :
a/10n-1
b/10n+8
2/Tìm điều kiện của n thuộc N để số 10n-1 chia hết cho 9 và 11
3/Cho A = 8n + 1111...111 (n thuộc N*)
1111.....111 có n chữ số 1
Chứng minh rằng A chia hết cho 9
\(1.a,10^n-1=100..0-1\)(n chữ số 0)=999..99(n chữ số 9)chia hết cho (vì có tổng bằng 9+9+..+9 chia hết cho 9)
\(b,10^n+8=100..0+8\)(n chữ số 0) = 1000...08.
Tổng các chữ số là: 1+0+0+...+8=9 chia hết cho 9.
2.
Tạm thời mik chỉ bik lm bài 1 nên pn thông cảm nhé
1 a) pn thao khảo tại nhé do ở đây có bài giống nên mik gửi link luôn nhé! http://olm.vn/hoi-dap/question/651590.html
b) Ta có: 10n+8= 1000000000000.......000+8
n chữ số 0
=> 10n+8= 10000000000........008
n chữ số 8
Ta có tổng các chữ số của 10n+8 bằng: 1+00000000.....000 ( Với n chữ số 0)+8= 1+0+8=9
Vì 9 chia hết cho 9 => 10n+8 chia hết cho 9
ta có : \(^{10^n}\) = 999...9 ( có n số 9 ) vì 9999...9 chia hết cho 9
suy ra 10^n - 1 chia hết cho 9
Chứng minh rằng 2n + 111....11 ( n chữ số 1 ) chia hết cho 3 ( n là số tự nhiên )
Ta tách 2n + 111...1 = 3n + (111..1 - n)
n chữ số n chữ số
Vì 1 số và tổng các chữ của nó có cùng số dư trong phép chia cho 3 nên 111...1(n chữ số 1) và n có cùng số dư trong phép chia cho 3 nên 111...1 - n chia hết cho 3
Mà 3n chia hết cho 3 => Vế phải chia hết cho 3. Vậy thì vế trái cũng chia hết cho 3 hay 2n + 111...1 chia hết cho 3
Chứng minh rằng 2n + 111....11 ( n chữ số 1 ) chia hết cho 3 ( n là số tự nhiên )
*Với n=3k , ta có :
\(2n+111...11=2.3k+111...11⋮3\) (1)
*Với n = 3k +1 , ta có :
\(2n+111...11=2.3k+1+111...11\)
\(=2.3k+111...12⋮3\) (2)
Từ (1) và (2) => \(2n+111...11⋮3\)
2n + 111...11 ( n chữ số 1 )
chia hết cho 3 thì tổng chia hết cho 3
= 2n + 1+1+1+..+1+1( n chữ số +1)
=2n+1n ( ví dụ nlaf 3 thì 1+1+1=3 . 1 =3 )
=3n
suy ra 3n chia hết cho 3