Tìm 2 số tự nhiên a và b biết tích của chúng là 2940 và BCNN của chúng là 210
Tìm 2 số tự nhiên a và b biết tích của chúng là 2940 và BCNN của chúng là 210
Ta có : a . b = ƯCLN ( a ; b ) . BCNN ( a ; b )
Mà a . b = 2940 và BCNN ( a ; b ) = 210
⇒⇒ ƯCLN ( a ; b ) = 2940 : 210 = 14
⇒⇒ a = 14m ; b = 14n ( m ; n > 0 )
Thay a = 14m ; b = 14n vào a . b = 2940, ta được :
14m . 14n = 2940
196 . m . n = 2940
m . n = 15
⇒⇒ m ; n ∈ Ư ( 15 ) = { 1 ; 3 ; 5 ; 15 }
+, Với m = 1 ; n = 15 ⇒⇒ a = 14 ; b = 210
+, Với m = 3 ; n = 5 ⇒⇒ a = 42 ; b = 70
+, Với m = 5 ; n = 3 ⇒⇒ a = 70 ; b = 42
+, Với m = 15 ; n = 1 ⇒⇒ a = 210 ; b = 14
Vậy ( a ; b ) ∈ { ( 14 ; 210 ) ; ( 42 ; 70 ) ; ( 70 ; 42 ) ; ( 210 ; 14 ) }
ab = UCLN ( a,b); BCNN ( a,b )
=> UCLN (a,b) = 2940 : 210 = 14
Vậy a = 14m và b = 14n ( m > hoặc = n )
Thay a.b = 2940 ta có:
14m . 14n = 2940
=> m.n = 2940 : ( 14 x 14 ) = 15
Vì m > hoặc = n nên 15 = 5.3 = 15.1
Với m = 5; n = 3 => a = 70 ; b = 42
Với m = 15; n = 1 => a = 210; b = 1
Ta có: \(a.b=ƯCLN\left(a,b\right)\times BCNN\left(a,b\right)\)
Mà \(a.b=2940\) và \(BCNN\left(a,b\right)=210\)
\(\LeftrightarrowƯCLN\left(a,b\right)=2940:210=14\)
\(\Rightarrow a=14m,b=14n\left(m;n>0\right)\)
Thay \(a=14m;b=14n\) vào \(a.b=2940\) ta được:
\(14m.14n=2940\)
\(\Leftrightarrow196.m.n=2940\)
\(\Leftrightarrow m.n=15\)
\(\Leftrightarrow m;n\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
\(+\) Với \(m=1;n=15\Rightarrow a=14;b=210\)
\(+\) Với \(m=3;n=5\Rightarrow a=42;b=70\)
\(+\) Với \(m=5;n=3\Rightarrow a=70;b=42\)
\(+\) Với \(m=15;n=1\Rightarrow a=210;b=14\)
Vậy \(\left(a,b\right)\in\left[\left(14;210\right);\left(42;70\right);\left(70;42\right);\left(210;14\right)\right]\)
tìm 2 số tự nhiên a và b biết tích của chúng là 2940 và BCNN của chúng là 210
Gọi số cần tìm là a và b ( giả sử a>b)
Ta có : a*b = 2940
Mà BCNN của chúng là 210
=> a chia hết cho b ( nếu a không chia hết cho b thì BCNN của chúng sẽ là :
a*b , mà a*b = 2940 nên a chỉ có thể chia hết cho b)
Vay a là 210 và b là 14
Tìm 2 số tự nhiên a và b biết tích của chúng là 2940 và BCNN của chúng là 210
Ta có : \(\overline{ab}=UCLN\left(a,b\right),BCNN\left(a,b\right)\)
\(\Rightarrow UCLN\left(a,b\right)=ab:BCNN\left(a,b\right)\)
\(\Rightarrow UCLN\left(a,b\right)=2940:210=14\)
Ta có : \(a.b=2940\)
Thay số vào, ta có : \(a.b=14.a'.14.b'=\left(14;14\right).a'.b'=2940\)
Ta có :
a' | 1 | 3 | 5 | 15 |
b' | 15 | 5 | 3 | 1 |
\(\Rightarrow\)
a | 14 | 42 | 70 | 210 |
b | 210 | 70 | 42 | 14 |
Vậy các số a, b cần tìm là : 14 và 210; 42 và 70; 70 và 42; 210 và 14
tìm hai số tự nhiên a và b,biết tích của chúng là 2940 và BCNN của chúng là 210
tìm hai số tự nhiên a và b biết tích của chúng là 2940 và BCNN của chúng là 210 ?
Vào đây http://olm.vn/hoi-dap/question/89869.html
ƯCLN(a;b)=2940:210=14
vậy a=14m ; b=14n (m\(\ge\)n)
thay vào a.b=2940 ta được
14m=14n=2940
=>m.n=2904:(14.14)=15
vì m\(\ge\)n nên 15=5.3=15.1
với m=5; n=3 thì a=70; b=42
với m=15; n=1 thì a=210; b=1
Với công thức ab = ƯCLN(a; b).BCNN(a; b)
nên suy ra ƯCLN(a; b) = 2940 : 210 = 14
Vậy a = 14m ; b = 14 n (m ≥ n)
Thay vào a.b = 2940 được:
14m.14n = 2940
=> m.n = 2940 : (14.14) = 15
Vì m ≥ n nên 15 = 5.3 = 15.1
-Với m = 5 ; n = 3 thì a = 70 ; b = 42
-Với m = 15 ; n = 1 thì a = 210 ; b =1
Tìm 2 số tự nhiên a và b biết tích của chúng là 2940 và BCNN =210
a) tìm hai số tự nhiên biết tổng của chúng là 162 và ƯCLN của chúng là 18
b) tìm hai số tự nhiên a,b biết rằng BCNN (a,b) = 300 ; ƯCLN (a,b) = 15
c) tìm hai số tự nhiên a và b biết tích của chúng bằng 2940 và BCNN của chúng là 210
a) tìm hai số tự nhiên biết tổng của chúng là 162 và ƯCLN của chúng là 18
b) tìm hai số tự nhiên a,b biết rằng BCNN (a,b) = 300 ; ƯCLN (a,b) = 15
c) tìm hai số tự nhiên a và b biết tích của chúng bằng 2940 và BCNN của chúng là 210
Tìm hai số tự nhiên a và b biết tích của chúng là 2940 và BCNN là 210
Câu hỏi của Nguyễn Vũ Hoàng Anh - Toán lớp 6 - Học trực tuyến OLM
vào đây
nè