So sánh 2 số A=2013.2015 và B=21142
so sánh
a, 2014.2014 và 2013.2015
b, 2015.2015 và 2013.2017
So sánh
\(\text{a, 2014,2014 và 2013,2015}\)
\(2014,2014>2013,2015\)
\(\text{b, 2015,2015 và 2013,2017}\)
\(2015,2015>2013,2017\)
a , 2014, 2014 > 2013 ,2015
b. 2015,2015 > 2013, 2017
hok tốt !!!
a)2014.2014=2013.2014+2014
2013.2015=2013.2014+2013
vì hai thừa số thứ nhất của hai tổng giống nhau mà 2014>2013 => 2014.2014>2013.2015
b)
2015.2015=2013.2015+2015.2
2013.2017=2013.2015+2013.2
vì hai thừa số thứ nhất của hai tổng giống nhau mà 2015.2 >2013.2 => 2015.2015>2013.2017
chúc bạn học tốt nha
không tính giá trị cụ thể của A và B. Hãy so sánh
A=2012.2016 B=2013.2015
A = 2012.2016 = (2013 - 1)(2015 + 1)
= 2013.2015 + 2013 - 2015 - 1
= 2013.2015 - 3 < 2013.2015
=> A < B
so sánh:
1)A= \(2013.2015+2014.2016\) và B= \(2014^2+2015^2-2\)
Dễ c/m đẳng thức: \(\left(n-1\right)\left(n+1\right)=n^2-1\)
Lúc đó: \(A=2014^2-1+2015^2-1=2014^2+2015^2-2=B\)
Vậy A = B
\(A=2013.2015+2014.2016\)
\(=\left(2015-2\right).2015+2014\left(2014+2\right)\)
\(=(2015^2-4030)+(2014^2+4028)\)
\(=\left(2015^2+2014^2\right)-\left(4030-4028\right)\)
\(=2014^2+2015^2-2\)
\(\Rightarrow A=B\)
So sánh:
a)2 ngũ 21 và 3 ngũ 14
b)2+2 ngũ 2+2 ngũ 3+...2 ngũ 99 và 2 ngũ 100
c)3 ngũ 10 và 2 ngũ 15
d)2013.2015 và2014 ngũ 2
không tính kết quả hãy so sánh A và B biết:
A=2012.2016 B=2013.2015
phải có cách giải
A=2012.2016
=(2013-1).2016
=2013.2016-2016
=2013.(2015+1)-2016
=2013.2015+2013-2016
=2013.2015-3 < 2013.2015
=> A < B
So sánh A với 1 biết : \(A=\frac{2013.2015+100}{2014.2014+99}\)
So sánh
a/ A = 20 + 21 + 22 + 23 +...+ 22014 b/ A = 2013.2015 và B = 20142
c/ A = 103 và B = 2100 d/ A = 3450 và B = 5300
1.so sánh các cặp số:
a) A=2013.2015 và B=\(2014^4\)
b) \(A=4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\) và \(B=3^{128}-1\)
2.chứng minh rằng các đa thức sau chỉ nhận giá trị dương với mọi giá trị của biến
a)\(9x^2-6x+3\)
b)\(x^2+y^2+2x+6y+16\)
lm hộ mị zới mn, ak kb nha
1)
a)\(A=2013.2015=2013.\left(2014+1\right)=2013.2014+2013\)
\(B=2014^2=2014.\left(2013+1\right)=2014.2013+2014\)
Ta có: \(2014.2013+2014>2013.2014+2013\)
\(\Rightarrow2014^2>2013.2015\)
\(\Rightarrow B>A\)
Vậy \(B>A\)
b) \(A=4.\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(\Rightarrow2A=2.4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3-1\right).\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^{16}-1\right)...\left(3^{64}+1\right)\)
\(\Rightarrow2A=3^{128}-1\)
\(\Rightarrow A=\frac{3^{128}-1}{2}< 3^{128}-1=B\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
2)
a)\(9x^2-6x+3=\left(3x\right)^2-2.3x.1+1^2+2\)
\(=\left(3x-1\right)^2+2\)
Ta có: \(\left(3x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(3x-1\right)^2+2\ge2\forall x\)
\(\Rightarrow\left(3x-1\right)^2+2>0\forall x\)
đpcm
b)\(x^2+y^2+2x+6y+16\)
\(=\left(x^2+2x+1\right)+\left(y^2+2.y.3+3^2\right)+6\)
\(=\left(x+1\right)^2+\left(y+3\right)^2+6\)
Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x+1\right)^2+\left(y+3\right)^2+6\ge6\forall x;y\)
\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+6>0\)
đpcm
Tham khảo nhé~
1.
a) A = 2013.2015 = (2014 - 1)(2014 + 1) = 20142 - 1
Vì 20142 - 1 < 20142 => A < B
Vậy A < B
b) \(A=4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(\Rightarrow2A=3^{128}-1\Leftrightarrow A=\frac{3^{128}-1}{2}\)
\(\Rightarrow A< B\)
Vậy A < B
Bài 2:
a) \(9x^2-6x+2=\left(3x\right)^2-2.3x+1+2=\left(3x-1\right)^2+2\)
Vì \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+2>0\)
=> 9x2 - 6x + 2 luôn nhận giá trị dương với mọi x
b) \(x^2+y^2+2x+6y+16=\left(x^2+2x+1\right)+\left(y^2+6y+9\right)+6=\left(x+1\right)^2+\left(y+3\right)^2+6\)
Vì \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+6>0\)
=> x2 + y2 + 2x + 6y + 16 luôn nhận giá trị dương với mọi x
SO SÁNH PHÂN SỐ
Bài 1: Không quy đồng mẫu hãy so sánh phân số sau bằng cách nhanh nhất:
a) và b) và
Bài 2. So sánh các phân số sau ; ;
a) ta có: \(1-\frac{2012}{2013}=\frac{1}{2013}\)
\(1-\frac{2013}{2014}=\frac{1}{2014}\)
mà \(\frac{1}{2013}>\frac{1}{2014}\) nên \(\frac{2013}{2014}>\frac{2012}{2013}\)
sao giống lớp 4 thế ta