Tính: A=5/11.16+5/16.21+...+5/61.66
A=5/11.16+5/16.21+.......+5/61.66 = ?
A=\(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
A=\(\left(\frac{1}{11}-\frac{1}{16}\right)+\left(\frac{1}{16}-\frac{1}{21}\right)+...+\left(\frac{1}{61}-\frac{1}{66}\right)\)
A=\(\frac{1}{11}+\left(\left(\frac{1}{16}-\frac{1}{16}\right)+\left(\frac{1}{21}-\frac{1}{21}\right)+...+\left(\frac{1}{61}-\frac{1}{61}\right)\right)-\frac{1}{66}\)
A=\(\frac{1}{11}+0-\frac{1}{66}\)
A=\(\frac{5}{66}\)
A=11-16\11.16+21-16\21.16+...+66-61\61.66
A=1\11-1\16+1\16-...-1\66
A=1\11-1\66
A=5\66
nếu đúng thì like nhé
=1/11-1/16 + 1/16 - 1/21 + ... + 1/61 -1/66
=(1/11 -1/66) +(1/16-1/16)+...+(1/61-1/61)
=(1/11-1/66)+0+..+0=1/11-1/66=6/66-1/66=5/66
vậy A=5/66
\(B=\dfrac{5}{11.16}+\dfrac{5}{16.21}+...+\dfrac{5}{61.66}\)Tính giá trị biểu thức:
\(B=\dfrac{5}{11.16}+\dfrac{5}{16.21}+...+\dfrac{5}{61.66}\)
\(B=\dfrac{5}{11.16}+\dfrac{5}{16.21}+...+\dfrac{5}{61.66}\)
\(B=\dfrac{5}{5}\left(\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+...+\dfrac{1}{61}-\dfrac{1}{66}\right)\)
\(B=\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+...+\dfrac{1}{61}-\dfrac{1}{66}\)
\(B=\dfrac{1}{11}-\dfrac{1}{66}\)
\(B=\dfrac{6}{66}-\dfrac{1}{66}=\dfrac{5}{66}\)
Tính
A=5/11.16+5/16.21+5/21.26+...+5/61.66
chúc các bạn học tốt
\(A=\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(=\frac{1}{11}-\frac{1}{66}=\frac{5}{66}\)
\(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)
\(A=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\)
\(A=\frac{1}{11}-\frac{1}{66}\)
\(A=\frac{6}{66}-\frac{1}{66}\)
\(A=\frac{5}{66}\)
=\(\frac{5}{11}\).\(\frac{5}{16}\)+\(\frac{5}{16}.\frac{5}{21}+\frac{5}{21}.\frac{5}{26}+...\frac{5}{61}.\frac{5}{66}\)
=\(\frac{5}{11}.\frac{5}{66}\)
=\(\frac{25}{726}\)
\(B=\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(B=\frac{5}{11.13}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(\Rightarrow B=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(\Rightarrow B=\frac{1}{11}-\frac{1}{66}\)
\(\Rightarrow B=\frac{5}{66}\)
\(\frac{5}{66}\)\(nha\)\(b\text{ạn}\)
\(theo\)\(mk\)\(l\text{à}\)\(th\text{ế}\)
\(ch\text{úc}\)\(b\text{ạn}\)\(h\text{ọc}\)\(t\text{ốt}\)
^_^ !
tính
A= \(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21+26}+...+\frac{5}{61.66}\)
\(A=\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(=\frac{1}{11}-\frac{1}{66}\)
\(=\frac{5}{66}\)
Vậy \(A=\frac{5}{66}\)
\(A=\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(=5.\left(\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{61.66}\right)\)
\(=5.\frac{1}{4}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{24}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{5}{4}.\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{5}{4}.\frac{5}{66}\)
\(=\frac{25}{264}\)
Mình sửa lại đề nhé :))
\(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)
\(\Rightarrow A=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\)
\(\Rightarrow A=\frac{1}{11}-\frac{1}{66}\)
\(\Rightarrow A=\frac{5}{66}\)
tính tổng D= 4/11.16+4/16.21+...+4/61.66
D=\(\dfrac{4}{11\cdot16}\)+\(\dfrac{4}{16\cdot21}\)+...+\(\dfrac{4}{61\cdot66}\)
D=\(\dfrac{4}{5}\)(\(\dfrac{1}{11}\)-\(\dfrac{1}{16}\)+\(\dfrac{1}{16}\)-\(\dfrac{1}{21}\)+...+\(\dfrac{1}{61}\)-\(\dfrac{1}{66}\))
D=\(\dfrac{4}{5}\)(\(\dfrac{1}{11}\)-\(\dfrac{1}{66}\))
D=\(\dfrac{4}{5}\)x\(\dfrac{5}{66}\)=\(\dfrac{2}{33}\)
\(\dfrac{7}{11.16}+\dfrac{7}{16.21}+\dfrac{7}{21.26}+.....+\dfrac{7}{61.66}\)
Đặt:
\(A=\dfrac{7}{11\cdot16}+\dfrac{7}{16\cdot21}+\dfrac{7}{21\cdot26}+...+\dfrac{7}{61\cdot66}\)
\(\dfrac{5}{7}A=\dfrac{5}{11\cdot16}+\dfrac{5}{16\cdot21}+...+\dfrac{5}{61\cdot66}\)
\(\dfrac{5}{7}A=\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+...+\dfrac{1}{61}-\dfrac{1}{66}\)
\(\dfrac{5}{7}A=\dfrac{1}{11}-\dfrac{1}{66}=\dfrac{6}{66}-\dfrac{1}{66}=\dfrac{5}{66}\)
\(A=\dfrac{5}{66}\cdot\dfrac{7}{5}=\dfrac{7}{66}\)
tính nhanh: \(\frac{1}{11.16}+\frac{1}{16.21}+\frac{1}{21.26}+...+\frac{1}{61.66}\)
\(\frac{1}{11.16}+\frac{1}{16.21}+\frac{1}{21.26}+...+\frac{1}{61.66}\)
=\(\frac{1}{5}.\frac{5}{11.16}+\frac{1}{5}.\frac{5}{16.21}+\frac{1}{5}.\frac{5}{21.26}+...+\frac{1}{5}.\frac{5}{61.66}\)
=\(\frac{1}{5}.\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\right)\)
=\(\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)\)
=\(\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)\)
=\(\frac{1}{5}.\left(\frac{6}{66}-\frac{1}{66}\right)=\frac{1}{5}.\frac{5}{66}=\frac{1}{66}\)
Đặt A = \(\frac{1}{11.16}+...+\frac{1}{61.66}\)
5A = \(\frac{5}{11.16}+..+\frac{5}{61.66}\)
5a = \(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
5a = \(\frac{1}{11}-\frac{1}{61}\)
5a = 50/671
a = \(\frac{50}{671}:5=\frac{10}{671}\)
\(\frac{1}{11.16}+\frac{1}{16.21}\)\(+\frac{1}{21.26}+...+\frac{1}{61.66}\)
= \(\frac{1}{5}.\left(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\right)\)
= \(\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)\)
= \(\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)\)
= \(\frac{1}{5}.\left(\frac{5}{6}\right)\)
=\(\frac{1}{6}\)
k mk nha !
Tính nhanh
1. 2100+299+298+297+.......+22+2
2. A=4/5.7 + 4/7.9 +......+4/59.61
3. C= 1/10.11+1/11.12 +......+ 1/99.100
4. D=5/11.16 + 5/16.21 + ......+5/61.66
5. 2100-299+298-297
P/s: làm từng phần một
1.
\(2A=2^2+2^3+...+2^{101}\)
\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(A=2^{101}-2\)
2.
\(\frac{A}{2}=\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{59\cdot61}\)
\(\frac{A}{2}=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\)
\(\frac{A}{2}=\frac{1}{5}-\frac{1}{61}\)
\(\frac{A}{2}=\frac{56}{305}\)
\(A=\frac{112}{305}\)
3; 4: tương tự câu 2
5.
\(2^{100}-2^{99}+9^{98}-2^{97}\)
\(=2^{97}\cdot\left(2^3-2^2+2-1\right)\)
\(=2^{97}\cdot5\)