Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
le vi dai
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
Duc Nguyendinh
26 tháng 10 2018 lúc 22:54

Là sao ko hiểu đề

hki Qqwwqe
Xem chi tiết
Trần Thanh Phương
8 tháng 9 2019 lúc 21:55

Áp dụng BĐT Cô-si :

\(\frac{1}{xy}\ge\frac{1}{\frac{\left(x+y\right)^2}{4}}\ge\frac{1}{\frac{1}{4}}=4\)

Do đó BĐT cần chứng minh \(\Leftrightarrow8\left(x^4+y^4\right)+4\ge5\)

Ta cần chứng minh BĐT sau là đủ : \(8\left(x^4+y^4\right)\ge1\)

Thật vậy: Áp dụng BĐT Cô-si :

\(x^4+\frac{1}{16}\ge\frac{x^2}{2};y^4+\frac{1}{16}\ge\frac{y^2}{2}\)

Cộng vế : \(x^4+y^4+\frac{1}{8}\ge\frac{x^2+y^2}{2}\ge\frac{\frac{\left(x+y\right)^2}{2}}{2}\ge\frac{\frac{1}{2}}{2}=\frac{1}{4}\)

\(\Leftrightarrow x^4+y^4\ge\frac{1}{4}-\frac{1}{8}=\frac{1}{8}\)

\(\Leftrightarrow8\left(x^4+y^4\right)\ge1\)

Ta có đpcm.

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vương Hoàng Minh
Xem chi tiết
Hạnh Trần
7 tháng 5 2015 lúc 21:36

 có bđt: a²+b² ≥ (a+b)²/2 (*) 
(*) <=> 2a²+2b² ≥ a²+b²+2ab <=> a²+b²-2ab ≥ 0 <=> (a-b)² ≥ 0 bđt đúng, dấu "=" khi a = b 
- - - 
ad (*) 2 lần liên tiếp: 
x^4 + y^4 ≥ (x²+y²)²/2 ≥ [(x+y)²/2]²/2 = (x+y)^4 /8 = 1/8 
=> 8(x^4 + y^4) ≥ 1 (*) 

mặt khác, có bđt: (x-y)² ≥ 0 <=> x²+y² ≥ 2xy <=> x²+y²+2xy ≥ 4xy <=> (x+y)² ≥ 4xy 
=> 1/xy ≥ 4/(x+y)² = 4 (**) 

(*) + (**): 8(x^4 + y^4) + 1/xy ≥ 1+4 = 5 (đpcm) dấu "=" khi x = y = 1/2 

Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 9:37

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

dbrby
Xem chi tiết
HUỲNH TÔ ÁI VÂN
Xem chi tiết
bach nhac lam
12 tháng 1 2020 lúc 7:13

\(A=8\left(x^4+y^4\right)+\frac{1}{4xy}+\frac{1}{4xy}+\frac{1}{2xy}\ge8\left(x^4+y^4\right)+\frac{1}{2\left(x^2+y^2\right)}+\frac{1}{2\left(x^2+y^2\right)}+\frac{1}{2xy}\)

\(\Rightarrow A\ge8\left(x^4+y^4\right)+\frac{1}{2\sqrt{2\left(x^4+y^4\right)}}+\frac{1}{2\sqrt{2\left(x^4+y^4\right)}}+\frac{1}{2\left(\frac{x+y}{2}\right)^2}\)

\(\Rightarrow A\ge3\sqrt[3]{8\left(x^4+y^4\right)\cdot\frac{1}{2\sqrt{2\left(x^4+y^4\right)}}\cdot\frac{1}{2\sqrt{2\left(x^4+y^4\right)}}}+\frac{1}{2\cdot\frac{1}{4}}=3+2=5\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Khách vãng lai đã xóa
huỳnh thị ngọc ngân
Xem chi tiết
Unruly Kid
11 tháng 11 2017 lúc 12:58

Từ giả thiết suy ra:

\(\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x^2-xy+y^2\right)+\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^2-xy+y^2\right)\left(x+y+2\right)+\left(x+y+2\right)^2=0\)

\(\Leftrightarrow\dfrac{1}{2}\left(x+y+2\right)\left(2x^2+2y^2-2xy+2x+2y+4\right)=0\)

\(\Leftrightarrow\dfrac{1}{2}\left(x+y+2\right)\left[\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+2\right]=0\)

\(\Rightarrow x+y=-2\)

Mà xy>0 nên x,y cùng nhỏ hơn 0

Áp dụng AM-GM,ta có: \(\sqrt{\left(-x\right)\left(-y\right)}\le\dfrac{-x-y}{2}=1\)

\(\Rightarrow xy\le1\Rightarrow\dfrac{-2}{xy}\le-2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{-2}{xy}\le-2\)

Chuyengia247
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 1 2022 lúc 8:12

Đặt \(\left(x;y\right)=\left(\dfrac{1}{a};\dfrac{1}{b}\right)\)

BĐT trở thành: \(\dfrac{a^2}{b}+\dfrac{b^2}{a}+\dfrac{16ab}{a+b}\ge5\left(a+b\right)\)

\(\Leftrightarrow\dfrac{a^3+b^3}{ab}+\dfrac{16ab}{a+b}-5\left(a+b\right)\ge0\)

\(\Leftrightarrow\dfrac{\left(a+b\right)\left(a^3+b^3\right)+16a^2b^2-5ab\left(a+b\right)^2}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^4}{ab\left(a+b\right)}\ge0\) (luôn đúng)