Cho tam giác ABC có ba góc nhọn (AB < AC) kẻ tia Cx vuông góc với tia phân giác của BAC tại M . Tia Cx cắt tia AB tại K. Tia AM cắt BC tại N.
a. Chứng minh tam giác AKC cân.
b. Chứng minh tam giác KNC cân.
Cho tam giác ABC có ba góc nhọn(AB<AC).Kẻ tia Cx vuông góc với tia phân giác của góc BAC tại m. tia Cx cắt tia AB tại K .Tia AM cắt BC tại N.
a. Chứng minh tam giác AKC cân
b. Chứng minh tam giác KNC cân
Cho tam giác ABC vuông tại A, đường cao AH. Trên tia đối của tia AB lấy điểm K sao cho góc AKC = 600. D và E lần lượt là hình chiếu của H trên AB, AC. Qua A kẻ đường thẳng vuông góc với DE cắt BC tại M (M thuộc BC). Kẻ tia Cx là tia phân giác của góc ACB, qua M kẻ đường thẳng song song với AC cắt Cx tại F. Chứng minh BF vuông góc CF.
Gọi AM cắt DE tại I
Theo tính chất hình chữ nhật ADHE : \(\widehat{E_1}=\widehat{HAC}=\widehat{MBA};\widehat{A_1}=\widehat{D_1}=\widehat{AHE}=\widehat{MCA}\)
\(\Rightarrow\widehat{A_1}=\widehat{ACM}\Rightarrow\Delta ACM\)cân tại M \(\Rightarrow MA=MC\)(*)
Do \(\Delta AID\)vuông tại I suy ra
\(\widehat{DAM}+\widehat{D_1}=90^0\Leftrightarrow\widehat{DAM}+\widehat{DAH}=90^0\left(1\right)\)
\(\widehat{ABM}+\widehat{DAH}=90^0\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{DAM}=\widehat{ABM}\)
\(\Rightarrow\Delta ABM\)cân tại M \(\Rightarrow MA=MB\)(**)
Từ (*);(**) suy ra MB=MC hay M là trung điểm BC . Do MF//AC suy ra
\(\widehat{MFC}=\widehat{ACF}\)
Mà
\(\widehat{ACF}=\widehat{MCF}\Rightarrow\widehat{MFC}=\widehat{MCF}\Rightarrow\Delta MFC\)cân tại M suy ra MC=MF
Mà MB=MC suy ra \(\Delta BFC\) có FM là trung tuyến \(FM=\frac{1}{2}BC\Rightarrow\) \(\Delta BFC\)vuông tại F hay \(BF\perp CF\left(đpcm\right)\)
bấm nhầm gửi câu hỏi nha
Cho tam giác ABC vuông tại A có AB=6cm; AB=8cm. Tia phân giác của góc BAC cắt BC tại M. Đường thẳng đi qua M và vuông góc với BC lần lượt cắt AC tại H và BA tại K. Tia BH cắt KC tại N. Chứng minh tam giác BNC vuông cân.
hình như bạn chép sai đề bài rồi.sao lại AB=6cm,AB=8cm là sao?
Đó chỉ là số đo thôi, bỏ qua nó đi. Câu a của mình là tính BC.
Cho tam giác ABC cân tại B, tia phân giác của góc ABC cắt AC tại K
a) chứng minh tam giác ABK = tam giác CBK
b) kẻ KE vuông góc AB, KF vuông góc BC ( E thuộc AB, F thuộc BC). Chứng minh KE= KF
c) kẻ tia Cx song song vs BA, Cx cắt tia BK tại H. Chứng minh tam giác HAC là tam giác gì? Vì s?
d) Chứng mình AH // BC
e) lấy điểm D trên AH sao cho AD= AE. Chứng minh KD vuông góc AH và bà điểm F,K,D thẳng hàng
Bài 1:
Cho tam giác ABC cân tại A, từ B kẻ đường thẳng x vuông góc với AB, từ C kẻ đường thẳng y vuông góc với AC, x cắt y tại M.
Chứng minh: AM là tia phân giác của góc BAC.
Bài 2:
Cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt đường trung trực BC tại I. Kẻ IH vuông góc với AB; IK vuông góc với AC.
Chứng minh: BH = CK.
Bài 3:
Cho tam giác ABC cân tại A, các đường trung trực của AB và AC cắt nhau tại I.
Chứng minh: AI là tia phân giác của góc BAC.
Bài 1:
Cho tam giác ABC cân tại A, từ B kẻ đường thẳng x vuông góc với AB, từ C kẻ đường thẳng y vuông góc với AC, x cắt y tại M.
Chứng minh: AM là tia phân giác của góc BAC.
Bài 2:
Cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt đường trung trực BC tại I. Kẻ IH vuông góc với AB; IK vuông góc với AC.
Chứng minh: BH = CK.
Bài 3:
Cho tam giác ABC cân tại A, các đường trung trực của AB và AC cắt nhau tại I.
Chứng minh: AI là tia phân giác của góc BAC.
Cho tam giác ABC cân tại A có góc BAC nhọn . Gọi M là trung điểm của cạnh BC , Vẽ ME Vuông góc với AB tại E; MF vuông góc với AC tại F . Tia FM cắt tia AB tại I , tia Em cắt tia AC tại K và N là trung điểm của IK
a) C/M tam giác AEM= tam giác AFM
b) C/m AM vuông góc với EF
c) C/M Tam giác MIK cân
d) C/M BM+CM< AB+AC
cho tam giác ABC vuông tại A ( AB < AC ). Kẻ tia phân giác BM của góc ABC ( M thuộc AC ). Kẻ ME vuông với BC tại E.
a) Chứng Minh: tam giác BAM =Tam giác BEM
b) Chứng Minh: Tam giác BAE cân tại B
c) Tia BA cắt tia EM tại K. Chứng minh tam giác BKC cân
Cm: Xét t/giác BAM và t/giác BEM
có góc A = góc MEB = 900 (gt)
BM : chung
góc ABM = góc MBE (gt)
=> t/giác BAM = t/giác BEM (ch -gn)
b) Ta có: t/giác BAM = t/giác BEM (cmt)
=> AB = BE (hai cạnh tương ứng)
=> t/giác BAE là t/giác cân tại B
c) Do t/giác BAM = t/giác BEM (cmt)
=> AM = EM (hai cạnh tương ứng)
Ta có: góc BAM + góc MAK = 1800
=> góc MAK = 1800 - 900 = 900 => góc MAK = góc MEC
Xét t/giác AMK và t/giác EMC
có góc MAK = góc MEC = 900 (cmt)
AM = EM (cmt)
góc AMK = góc EMC (đối đỉnh)
=> t/giác AMK = t/giác EMC (g.c.g)
=> AK = EC (hai cạnh tương ứng)
Mà AB + AK = BK
BE + EC = BC
và AB = BE (Cmt)
=> BK = BC => t/giác BKC là t/giác cân tại B
cho tam giác ABC vuông tại A .(AB<AC).tia phân giác của góc ABC cắt AC tại D, DN vuông góc với BC tại N
a) chứng minh tam giác ABD = tam giác NBD.
b)gọi K là giao điểm của hai đường thẳng BA và ND . chứng minh tam giác AKC cân .vẽ EH vuông góc với BC tại H . chứng minh BC+ AH>EK+AB