Giải phương trình: \(\sqrt{x^2-\frac{7}{x^2}}+\sqrt{x-\frac{7}{x^2}}=x\)
\(\sqrt{x^2-\frac{7}{x^2}}+\sqrt{x-\frac{7}{x^2}}=x\)
Giải phương trình
Máy tính Casio giải ra x = 2
Còn nghiệm nào nữa không thì không biết
..
không ghi lại đề nha
\(\Leftrightarrow\sqrt{\frac{x^4-7}{x^2}}+\sqrt{\frac{x^3-7}{x^2}}=x\) ( * )
ĐKXĐ : \(\hept{\begin{cases}x^4-7\ge0\\x^3-7\ge0\\x^2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^4\ge7\\x^3\ge7\\x\ne0\end{cases}}\)
( * ) \(\Rightarrow\frac{\sqrt{x^4-7}}{\sqrt{x^2}}+\frac{\sqrt{x^3-7}}{\sqrt{x^2}}=x\)
\(\Leftrightarrow\frac{\sqrt{x^4-7}+\sqrt{x^3-7}}{x}=x\)
\(\Leftrightarrow\sqrt{x^4-7}+\sqrt{x^3-7}=x^2\)
\(\Leftrightarrow\left(\sqrt{x^4-7}+\sqrt{x^3-7}\right)^2=x^4\)
\(\Leftrightarrow\left(x^4-7\right)+2\sqrt{\left(x^4-7\right)\left(x^3-7\right)}+\left(x^3-7\right)=x^4\)
\(\Leftrightarrow2\sqrt{x^7-7x^4-7x^3+49}=x^4-x^4+7-x^3+7\)
\(\Leftrightarrow\left(2\sqrt{x^7-7x^4-7x^3+49}\right)^2=\left(14-x^3\right)^2\)
\(\Leftrightarrow4\left(x^7-7x^4-7x^3+49\right)=196-28x^3+x^6\)
\(\Leftrightarrow4x^7-28x^4-28x^3+196=196-28x^3+x^6\)
\(\Leftrightarrow4x^7-x^6-28x^4=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\left(lo\text{ại}\right)\\x=2\left(nh\text{ậ}n\right)\end{cases}}\)
Vậy x = 2
Giải phương trình:
\(\sqrt{\frac{x^2+x+1}{x}}+\sqrt{\frac{x}{x^2+x+1}}=\frac{7}{4}\)
(đkxđ: x>0)
Theo BĐT Cauchy ta có
\(\sqrt{\frac{x^2+x+1}{x}}+\sqrt{\frac{x}{x^2+x+1}}\ge2\sqrt[4]{1}=2\)
Mà VP=7/4 <2=> MT
Vậy PT vô nghiệm
Giải hệ phương trình \(\hept{\begin{cases}\frac{5}{\sqrt{x}-2}-\frac{2}{x+y}=4\\\frac{4}{\sqrt{x}-2}-\frac{3-x-y}{x+y}=\frac{7}{2}\end{cases}}\)
Giải Phương trình sau : \(\sqrt{x}-x\left(x-\frac{1}{2}\right)=\frac{1}{2x^3}-\frac{1}{2x\sqrt{x}}\)
giải hệ phương trình sau :\(\hept{\begin{cases}\sqrt{4x-2y}-2\sqrt{x-2y}=-1\\\sqrt{x-2y}+7\left(2x-y\right)=37\end{cases}}\)
giải hệ phương trình\(\hept{\begin{cases}x+y=-6\\\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}=2\end{cases}}\)
giải phương trình \(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
Giair phương trình \(\sqrt{x^2-\frac{7}{x^2}}+\sqrt{x-\frac{7}{x^2}}=x\)
Nâng cao và phát triển toán 9 Vũ Hữu Bình tập 2 bài 318a trang 51 :)
giải hệ phương trình
\(\hept{\begin{cases}\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=\frac{7}{2+\sqrt{xy}}\\x\sqrt{xy}+y\sqrt{xy}=7\end{cases}}\)
giải phương trình
\(\frac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{3-x}}=x-\frac{1}{2}\)
\(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
em đang cần gấp ạ
mong mn giúp đỡ
\(b,x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
Đặt: \(\hept{\begin{cases}\sqrt{x-1}=a\\\sqrt{7-x}=b\end{cases}}\)Ta được pt mới: \(a^2+2b=2a+ab\Leftrightarrow\left(a-2\right)\left(a-b\right)=0\)
Với \(a=2\Rightarrow x=5\)Với \(a=b\Rightarrow x=2\)cái thứ 1 nhân liên hợp đi
sau đó nhân chéo lên vs vế phải
rồi rút gọn
bình lên
giải pt là đc
Giai các phương trình
1)\(\frac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\frac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)
2)\(\frac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x+5}}=6-x\)
1.
đặt \(a=\sqrt{2+\sqrt{x}}\),\(b=\sqrt{2-\sqrt{x}}\)\(\left(a,b>0\right)\)
có \(a^2+b^2=4\)
pt thành \(\frac{a^2}{\sqrt{2}+a}+\frac{b^2}{\sqrt{2}-b}=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}\left(a^2+b^2\right)-ab\left(a-b\right)=\sqrt{2}\left(\sqrt{2}+a\right)\left(\sqrt{2}-b\right)\)
\(\Leftrightarrow2\sqrt{2}+\sqrt{2}ab-ab\left(a-b\right)-2\left(a-b\right)=0\)
\(\Leftrightarrow\left(ab+2\right)\left(\sqrt{2}-a+b\right)=0\)
vì a,b>o nên \(a-b=\sqrt{2}\)
\(\Rightarrow\sqrt{2+\sqrt{x}}-\sqrt{2-\sqrt{x}}=\sqrt{2}\)
Bình phương 2 vế:
\(4-2\sqrt{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=2\)
\(\Leftrightarrow\sqrt{4-x}=1\)
\(\Rightarrow x=3\)
Nếu đúng thì tích giùm mình cái nha!!!!!!!!!!!
2.ĐKXĐ D=R
Đặt \(a=\sqrt[3]{7-x},b=\sqrt[3]{x-5}\)
ta có: \(\hept{\begin{cases}a^3+b^3=2\\a^3-b^3=12-2x=2\left(6-x\right)\end{cases}}\)
Vậy ta có:
\(\frac{a-b}{a+b}=\frac{a^3-b^3}{2}\Leftrightarrow\left(a-b\right)\left(2-\left(a+b\right)\left(a^2+ab+b^2\right)\right)=0\)
Th1: \(a-b=0\Leftrightarrow\sqrt[3]{7-x}=\sqrt[3]{x-5}\Leftrightarrow x=6\)
Th2: \(\hept{\begin{cases}\left(a+b\right)\left(a^2+ab+b^2\right)=2\\a^3+b^3=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a+b\right)\left(a^2+ab+b^2\right)=2\\\left(a+b\right)\left(a^2-ab+b^2\right)12\end{cases}}\)
Từ đó suy ra:
\(\frac{a^2-ab+b^2}{a^2+ab+b^2}=6\Leftrightarrow5a^2-7ab+6b^2=0\)
nếu \(b=0\Leftrightarrow\sqrt[3]{x-5}=0\Leftrightarrow x=5\)thay vào phương trình ta thấy không thỏa mãn.
nếu \(b\ne0\Rightarrow5a^2-7ab+5b^2=0\Leftrightarrow5\left(\frac{a}{b}\right)^2-7\frac{a}{b}+5=0\)(1)
phương trình (1) vô nghiệm với ẩn \(\frac{a}{b}\). nên trường hợp này không xảy ra.
vậy phương trình có duy nhất nghiệm x = 6.