Cho hệ phương trình \begin{cases}
2x+ay=-4\\
ax-3y=5
\end{cases}
Tìm a để HPT có nghiệm duy nhất
1. Giải hệ PT:
\(\hept{\begin{cases}2x+ay=-4\\ax-3y=5\end{cases}}\)
2. \(\hept{\begin{cases}2x-ay=b\\ax+by=1\end{cases}}\)
Tìm a,b để hệ có vô số nghiệm
3. \(\hept{\begin{cases}x+ay=a+1\\ax+y=3a-1\end{cases}}\)
a) Giải và biện luận hpt
b) Tìm a để hệ có nghiệm duy nhất thỏa mãn đk xy nhỏ nhất
Giúp mình với TT. Ai giải được nhanh, đúng nhất mình sẽ tick nha ^^
bn tham khảo trang https://www.slideshare.net/bluebookworm06_03/tng-hp-h-pt
Cho hệ phương trình \(\begin{cases} ax-y=2\\ x+ay=3 \end{cases} \). Tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó
- Để hệ phương trình có nghiệm duy nhất
\(\Leftrightarrow\dfrac{a}{1}\ne-\dfrac{1}{a}\)
\(\Leftrightarrow a^2\ne-1\) ( Luôn đúng )
Vậy mọi a thuộc R hệ phương trình luôn có 1 nghiệm duy nhất .
- Ta có : \(\left\{{}\begin{matrix}y=ax-2\\x+a\left(ax-2\right)=3\end{matrix}\right.\)
- Từ PT ( II ) => \(x+xa^2-2a=3\)
\(\Rightarrow x=\dfrac{2a+3}{a^2+1}\)
- Thay lại x vào PT ( I ) ta được : \(y=\dfrac{a\left(2a+3\right)}{a^2+1}-2\)
\(=\dfrac{2a^2+3a-2a^2-2}{a^2+1}=\dfrac{3a-2}{a^2+1}\)
Vậy ...
bài 1: Trong buổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ
bài 2:
1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó
b) tìm a để hệ phương trình vô nghiệm
2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a
b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1
c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên
bài 3:
1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)
2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm
cho hpt \(\hept{\begin{cases}\text{ax}+y=1\\2x-ay=3\end{cases}}\)
a. cmr với mọi a hệ có nghiệm duy nhất
b. tìm các giá trị của a để hpt có nghiệm duy nhất (x;y) thoả mãn x>0, y>0
cho hpt \(\hept{\begin{cases}ax+y=1\\2x-ay=3\end{cases}}\)
a. cmr với mọi a hệ có nghiệm duy nhất
b. tìm các giá trị của a để hpt có nghiệm duy nhất (x;y) thoả mãn x>0, y>0
Cho hệ phương trình\(\hept{\begin{cases}-2mx+y=5\\mx+3y=1\end{cases}}\)
Tìm m để hpt có nghiệm duy nhất thỏa mãn x-y=2
Hệ phương trình: \(\hept{\begin{cases}-2mx+y=5\\mx+3y=1\end{cases}}\)
Với \(m\ne0\)hệ phương trình có 2 nghiệm riêng biệt là \(x=-\frac{2}{m};y=1\)
Để hệ phương trình có nghiệm duy nyaats thỏa mãn x - y = 2 thì
\(-\frac{2}{m}-1=2\Rightarrow-\frac{2}{m}=1+2=3\)
\(\Rightarrow3m=-2.1\Rightarrow m=-\frac{2}{3}\left(TMĐKx\ne0\right)\)
Vậy ...........................
Cho hệ phương trình \(\hept{\begin{cases}x+ay=1\\-ax+y=a\end{cases}}\)
a, Tìm giá trị nguyên của a để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn 2x -y= a+1
b, tìm a để hệ có nghiệm (x;y) sao cho x<0; y<0
\(\hept{\begin{cases}x+ay=1\\\\-ax+y=a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-ay\\-a\left(1-ay\right)+y=a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-\frac{2a^2}{1+a^2}=\frac{1-a^2}{1+a^2}\\y=\frac{2a}{1+a^2}\end{cases}}\)
Theo đề bài ta có \(\hept{\begin{cases}x< 0\\y< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1-a^2< 0\\2a< 0\end{cases}}\)
\(\Leftrightarrow x< -1\)
a/ Ta xem đây là hệ phương trình 3 ẩn rồi giải bình thường.
\(\hept{\begin{cases}x+ay=1\\-ax+y=a\\2x-y=a+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-ay\\-a\left(1-ay\right)+y=a\\2\left(1-ay\right)-y=a+1\end{cases}}\)
Tới đây giải tiếp nhé. Không có bút giấy nháp nên giúp tới đây nhé. Chỉ cần thế là được nhé
1.Cho hpt \(\hept{\begin{cases}nx-y=4\\x+y=1\end{cases}}\)
a) Với giá trị nào của n thì hệ phương trình có duy nhất nghiệm?
b) Với giá trị nào của n thì hệ phương trình vô nghiệm
Bài 3: Cho hệ phương trình \(\hept{\begin{cases}3x+my=4\\x+y=1\end{cases}}\)
a. Tìm m để hệ phương trình trên có nghiệm duy nhất, vô số nghiệm
b. Tìm m để hệ phương trình trên có nghiệm x<0, y>0
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
a, Tìm giá trị nguyên của m để nghiệm nguyên duy nhất (x;y) thỏa mãn 2x-y= m+ 1
b, Tìm a để hệ có nghiệm (x;y) sao cho x<0; y,0
lời giải có trước sau đó đổi đề cho phù hợp với lời giải