tìm các số x,y,z thỏa mãn đẳng thức:
căn bậc hai của (x-2)^2+căn bậc hai của (y+2)^2 +lx+y+zl=0
Các bạn giải giúp mình nha!
Câu 1: Tìm tất cả các số nguyên x=>y=>z=>0 sao cho:
xyz + xy+ yz + xz +x+y+z=2011
Câu 2 Giải phương trình :
4(x^2+2)^2 = 25(x^3+1)
Câu 3 Tìm Max ,Min của
P= 2x^2 - xy - y^2
Với x, y thỏa mãn: x^2 + 2xy+ 3y^2=4
Câu 4 Cho a,b,c là độ dài ba cạnh của tam giác chứng minh:
1/(a^2+bc) + 1/(b^2+ac)+1/(c^2+ab) <= (a+b+c)/(2abc)
Câu 5 Tìm các số hữu tỉ x,y thỏa mãn:
x(căn bậc hai của(2011) + căn bậc hai của(2010)) + y(căn bậc hai của(2011) - căn bậc hai của(2010)) = Căn bậc hai của(2011^3) + Căn bậc hai của(2010^3)
Tìm các số x,y,z thỏa mãn đẳng thức:căn [(x-căn2)2]+[căn(y+căn2)2]+|x+y+z|=0
Hì hì !Xin lỗi các bạn vì mình ko biết viết dấu căn
cho x,y,z là các số thực thỏa mãn -1<=x,y,z <=1 và x+y+z =o. tìm GTNN biểu thức :P=căn bậc 2 1+x+y^2 +căn bậc 2 của 1+y+z^2 + căn bậc 2 của 1+z+x^2
Tìm GTNN của:
1) A= căn bậc hai của(x+1) + căn bậc hai của(y-2) biết x+y=4
2) B= (căn bậc hai của(x-1)/x) + (căn bậc hai của(y-2)/y)
3) x + căn bậc hai của(2-x)
Giả sử x, y là các số dương thỏa mãn đẳng thức x + y = (căn bậc hai của 10). Tìm giá trị của x và y để biểu thức P = (x^4 + 10(y^4 + 1) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy
tìm x,y,z biết căn bậc 2 của((x - 2024) ^ 2) + |x + y - 4z| +y^ 2 . căn bậc 2 của 5 =0
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn dễ hơn nhé.
căn bậc 2 của (x) +căn bậc 2 của (y)+căn bậc 2 của (z)=2 ; x+y+z=2 tính P= căn bậc 2 của ((x+1)(y+1)(z+1)) ((căn bậc 2 của (x) /(x+1))+(căn bậc 2 của (y) / (y+1))+(căn bậc 2 của (z) / (z+1))
căn bậc 2 của (x) +căn bậc 2 của (y)+căn bậc 2 của (z)=2 ; x+y+z=2 .tính P= căn bậc 2 của ((x+1)(y+1)(z+1)) ((căn bậc 2 của (x) /(x+1))+(căn bậc 2 của (y) / (y+1))+(căn bậc 2 của (z) / (z+1))
Tìm gtnn của căn bậc hai (x^2+(y+1)^2)+ căn bậc hai(x^2+(y-3)^2)
x;y là số thực
2x-y=2
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ tốt hơn nhé.