Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thanh Tâm
Xem chi tiết
Không Tên
14 tháng 2 2018 lúc 19:01

\(ĐKXĐ:\)   \(\forall x\in Z\)

              \(\frac{x^2}{x^2+2x+2}+\frac{x^2}{x^2-2x+2}-\frac{4\left(x^2-5\right)}{x^4+4}=\frac{322}{65}\)

\(\Leftrightarrow\)\(\frac{x^2\left(x^2-2x+2\right)}{\left(x^2+2x+2\right)\left(x^2-2x+2\right)}+\frac{x^2\left(x^2+2x+2\right)}{\left(x^2-2x+2\right)\left(x^2+2x+2\right)}-\frac{4\left(x^2-5\right)}{\left(x^2-2x+2\right)\left(x^2+2x+2\right)}=\frac{322}{65}\)

\(\Leftrightarrow\)\(\frac{x^4-2x^3+2x^2+x^4+2x^3+2x^2-4x^2+20}{\left(x^2-2x+2\right)\left(x^2+2x+2\right)}=\frac{322}{65}\)

\(\Leftrightarrow\)\(\frac{2x^4+10}{x^4+4}=\frac{322}{65}\)

\(\Rightarrow\)\(65\left(2x^4+10\right)=322\left(x^4+4\right)\)

\(\Leftrightarrow\)\(130x^4+650=322x^4+1288\)

\(\Leftrightarrow\)\(192x^4=-638\)  (vô lý)

Vậy pt vô nghiệm

P/S:mk lm bừa thôi, đúng thì you tham khảo, sai thì báo mk biết nha

tran van binh
Xem chi tiết
Trang Lê
Xem chi tiết
Nguyễn Phan Thục Trinh
Xem chi tiết
Thanh Ngân
15 tháng 6 2019 lúc 19:09

a/ \(\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)

<=> \(\frac{\left(x+1\right)^2}{\left(x+1\right)^2+1}+\frac{\left(x+1\right)^2+1}{\left(x+1\right)^2+2}=\frac{7}{6}\left(1\right)\)

đặt \(\left(x+1\right)^2=a\left(a>0\right)\)

=> \(\left(1\right)\)<=> \(\frac{a}{a+1}+\frac{a+1}{a+2}=\frac{7}{6}\)

<=> \(\frac{a\left(a+2\right)+\left(a+1\right)^2}{\left(a+1\right)\left(a+2\right)}=\frac{7}{6}\)

<=> \(\frac{2a^2+4a+1}{a^2+3a+2}=\frac{7}{6}\)

<=> \(6\left(2a^2+4a+1\right)=7\left(a^2+3a+2\right)\)

<=> \(5a^2+3a-8=0\)

<=> \(5a^2-5a+8a-8=0\)

<=>  \(\left(5a+8\right)\left(a-1\right)=0\)

<=> \(a=\frac{-8}{5}\left(h\right)a=1\)

mà \(a>0\)

=> \(a=1\)

=> \(\left(x+1\right)^2=1\)

=> \(x+1=1\left(h\right)x+1=-1\)

=> \(x=0\left(h\right)x=-2\)

vậy  ......

chúc bn học tốt

Phùng Minh Quân
15 tháng 6 2019 lúc 19:32

Xét x = 0 và x = -2 , thay vào ta được \(VT=VP\)

Xét x > 0 : 

\(VT=\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=1-\frac{1}{x^2+2x+2}+1-\frac{1}{x^2+2x+3}\)

\(=2-\left(\frac{1}{x^2+2x+2}+\frac{1}{x^2+2x+3}\right)>2-\left(\frac{1}{2}+\frac{1}{3}\right)>\frac{7}{6}=VP\) ( loại ) 

Xét x < -2 : 

\(VT=2-\left(\frac{1}{x\left(x+2\right)+2}+\frac{1}{x\left(x+2\right)+3}\right)>2-\left(\frac{1}{2}+\frac{1}{3}\right)=\frac{7}{6}=VP\) ( loại ) 

Xét -2 < x < 0 : 

\(VT=2-\left(\frac{1}{x^2+2x+2}+\frac{1}{x^2+2x+3}\right)>2-\left(\frac{1}{-2}+1\right)=\frac{3}{2}>\frac{7}{6}=VP\) ( loại ) 

Vậy ... 

Cỏ dại
Xem chi tiết
Phạm Hương Giang
Xem chi tiết
Incursion_03
20 tháng 1 2019 lúc 21:54

\(a,ĐKXĐ:x\ne\pm\frac{1}{2}\)

Ta có: \(\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)

\(\Leftrightarrow2\left(2x-1\right)-3\left(2x+1\right)=4\)

\(\Leftrightarrow4x-2-6x-3=4\)

\(\Leftrightarrow-2x=9\)

\(\Leftrightarrow x=-\frac{9}{2}\)(Tm ĐKXĐ)

Vậy pt có nghiệm duy nhất \(x=-\frac{9}{2}\)

\(b,ĐKXĐ:x\ne\pm1;-3\)

Ta có: \(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)

\(\Leftrightarrow\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)

\(\Leftrightarrow2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x-1\right)\left(x+1\right)\)

\(\Leftrightarrow2x\left(x^2+2x-3\right)+18x+18=\left(2x-5\right)\left(x^2-1\right)\)

\(\Leftrightarrow2x^3+4x^2-6x+18x+18=2x^3-2x-5x^2+5\)

\(\Leftrightarrow9x^2+14x+13=0\)

\(\Leftrightarrow\left(9x^2+14x+\frac{49}{9}\right)+\frac{68}{9}=0\)

\(\Leftrightarrow\left(3x+\frac{7}{3}\right)^2+\frac{68}{9}=0\)

Pt vô nghiệm 

\(c,ĐKXĐ:x\ne1\)

Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)

\(\Leftrightarrow x^2+x+1+2x^2-5=x-1\)

\(\Leftrightarrow3x^2=3\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow x=\pm1\)

Kết hợp vs ĐKXĐ được x = -1

Vậy pt có nghiệm duy nhất x = -1

zZz Cool Kid_new zZz
20 tháng 1 2019 lúc 21:57

làm lần lượt nha(bài nào k bt bỏ qua)

\(a,\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)

\(\Rightarrow\frac{2\left(2x-1\right)-3\left(2x+1\right)}{4x^2-1}=\frac{4}{4x^2-1}\)

\(\Rightarrow-2x-5=4\)

\(\Rightarrow-2x=9\)

\(\Rightarrow x=\frac{9}{-2}\)

Nguyễn Thị Ngọc Mai
Xem chi tiết
tran huy vu
23 tháng 3 2019 lúc 22:42

a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)

\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)

\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)

\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0

\(x-1=0\)

\(x=1\)

Nguyễn Thị Lan Anh
Xem chi tiết
Trương Thị Trang
Xem chi tiết
Trương Thị Trang
19 tháng 7 2017 lúc 17:23

các bạn giúp mình với. cảm ơn 

Trương Thị Trang
19 tháng 7 2017 lúc 19:53

giúp mình với

Bui Huyen
30 tháng 7 2019 lúc 20:08

a,\(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)\(\Leftrightarrow\frac{13\left(x+3\right)}{\left(x^2-9\right)\left(2x+7\right)}+\frac{x^2-9}{\left(x^2-9\right)\left(2x+7\right)}-\frac{6\left(2x+7\right)}{\left(x^2-9\right)\left(2x+7\right)}=0\)

\(\Leftrightarrow x+x^2-12=0\Leftrightarrow\orbr{\begin{cases}x=-4\\x=3\end{cases}}\)

b,\(\frac{x-3}{x-5}+\frac{1}{x}=\frac{x+5}{x\left(x-5\right)}\Leftrightarrow\frac{x\left(x-3\right)}{x\left(x-5\right)}+\frac{x-5}{x\left(x-5\right)}-\frac{x+5}{x\left(x-5\right)}=0\)

\(\Leftrightarrow x^2-3x-10=0\Rightarrow\orbr{\begin{cases}x=5\left(L\right)\\x=-2\end{cases}}\)

c,\(\frac{1}{x+2}+\frac{1}{x\left(x-2\right)}-\frac{8}{x\left(x^2-4\right)}=0\)\(\Leftrightarrow\frac{x\left(x-2\right)}{x\left(x^2-4\right)}+\frac{x+2}{x\left(x^2-4\right)}-\frac{8}{x\left(x^2-4\right)}=0\)

\(\Leftrightarrow x^2-x-6=0\Rightarrow\orbr{\begin{cases}x=3\\x=-2\left(L\right)\end{cases}}\)

d,\(\frac{2}{\left(x^2-4\right)}-\frac{1}{x\left(x-2\right)}-\frac{x+4}{x\left(x+2\right)}=0\)\(\Leftrightarrow\frac{2x}{x\left(x^2-4\right)}-\frac{x+2}{x\left(x^2-4\right)}-\frac{\left(x+4\right)\left(x-2\right)}{x\left(x^2-4\right)}=0\)

\(\Leftrightarrow-x^2-5x-10=0\)(vô nghiệm)

\(\)