Cho x,y,z nguyên dương đôi một khác nhau và thoả mãn:
1/x2+2yz + 1/y2+2xz + 1/z2+2xy >=9
Cho x, y, z ≠0 và (y2+z2−x2)/2yz +(z2+x2−y2)/2xz +(x2+y2−z2)/2xy =1. Chứng minh rằng trong ba phân thức đã cho có một phân thức bằng 1 và một phân thức bằng -1.
Giúp mình giải bài này nha
Cho x, y, z ≠0 và (y2+z2−x2)/2yz +(z2+x2−y2)/2xz +
(x2+y2−z2)/2xy =1. Chứng minh rằng trong ba phân thức đã cho có một phân thức bằng 1 và một phân thức bằng -1.
Nhanh lên nhé Mình cần gấp lắm😢
Cho x,y,z là các số khác 0 và đôi một khác nhau thỏa mãn 1/x +1/y + 1/z =0
Tính giá trị biểu thức A=yz/(x^2 +2yz) + xz/(y^2+ 2xz) + xy/(z^2+ 2xy)
Cho x y z đôi một khác nhau và 1 x 1 y 1 z 0Tính giá trị A yz x 2 2yz xz y 2 2xz xy z 2 2xy
tao đẹp trai thì có gì sai
bài này mà là âm nhạc???
cho x,y,z đôi một khác nhau và 1/x+1/y+1/z=0
tính : A=yz/(x^2+2yz)+xz/(y^2+2xz)+xy/(z^2+2xy)
Cho x y z đôi một khác nhau và 1/x+1/y+1/z=0
Tính giá trị A = yz/x^2+2yz + xz/y^2+2xz + xy/z^2+2xy
Ta có 1/x+1/y+1/z=0
=>1/x+1/y=-1/z
=>(1/x+1/y)^3= (-1/z)^3
=>1/x^3+1/y^3+3.1/x.1/y.(1/x+1/y) =-1/z^3
=>1/x^3+1/y^3+1/z^3= -3.1/x.1/y.(1/x+1/y) =3/(xyz) (vì 1/x+1/y=-1/z)
Mặt khác: 1/x+1/y+1/z=0
=>(xy+yz+zx)/(xyz)=0
=>xy+yz+zx=0
A=yz/x^2 +2yz + xz/y^2+ 2xz + xy/z^2+ 2 xy
=xyz/x^3+xyz/y^3+xyz/z^3 +2(xy+yz+zx) (vì x,y,z khác 0)
=xyz(1/x^3+1/y^3+1/z^3) (vì xy+yz+zx=0)
=xyz.3/(xyz) (vì 1/x^3+1/y^3+1/z^3=3/(xyz) )
=3
Vậy A=3.
hình như bạn Bui cong minh giải sai rồi thì phải
mik ko hiểu chỗ xyz/x^3...+2(xy+yz+zx)
Cho x, y, z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\).Tính giá trị của biểu thức: \(\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow\dfrac{xy+yz+xz}{xyz}=0\Leftrightarrow xy+yz+xz=0\Leftrightarrow yz=-xy-xz\)
Ta có \(x^2+2yz=x^2+yz-xy-xz=\left(x-y\right)\left(x-z\right)\)
Tương tự \(y^2+2xz=\left(y-x\right)\left(y-z\right);z^2-2xy=\left(z-x\right)\left(z-y\right)\)
\(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(y-z\right)\left(y-x\right)}+\dfrac{xy}{\left(z-x\right)\left(z-y\right)}\\ A=\dfrac{-yz\left(y-z\right)-xz\left(z-x\right)-xy\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ A=\dfrac{-yz\left(y-z\right)+xz\left(y-z\right)+xz\left(x-y\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ A=\dfrac{\left(y-z\right)\left(xz-yz\right)+\left(x-y\right)\left(xz-xy\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ A=\dfrac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)
⇒yz=−xy−zx⇒yz/x^2+2yz=yz/x^2+yz−xy−zx
=yz/(x−y)(x−z)
Tương tự: xy/z^2+2xy=xy/(x−z)(y−z)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow xy+yz+xz=0\)
\(\Leftrightarrow yz=-xy-xz\)\(\Leftrightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-xz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)
Tương tự: \(\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(y-x\right)\left(y-z\right)}\)
\(\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-z\right)\left(y-z\right)}\)
\(\Rightarrow\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}=\dfrac{-yz\left(y-z\right)-xz\left(z-x\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)
Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính giá trị của biểu thức: \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)
\(\Rightarrow yz=-xy-zx\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-zx}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)
Tương tự: \(\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(y-x\right)\left(y-z\right)}\) ; \(\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-z\right)\left(y-z\right)}\)
\(\Rightarrow A=\dfrac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)
Cho x,y,z là các số khác 0 và đôi một khác nhau thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\). Tính giá trị biểu thức \(M=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
Bạn tham khảo tại đây:
Câu hỏi của trieu dang - Toán lớp 8 - Học toán với OnlineMath
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{\left(yz+xz+xy\right)}{xyz}=0\)
\(\Rightarrow yz+zx+xy=0\)
Ta có : \(x^2+2yz=x^2+yz+yz\)
\(=x^2+yz-zx-xy\)
\(=x\left(x-z\right)-y\left(x-z\right)\)
\(=\left(x-y\right)\left(x-z\right)\)
Tương tự : \(y^2+2xz=y^2+xz+xz\)
\(=y^2+xz-xy-yz\)
\(=y\left(y-x\right)+z\left(x-y\right)\)
\(=\left(x-y\right)\left(z-y\right)\)
\(z^2+2xy=\left(x-z\right)\left(y-z\right)\)
\(\Rightarrow M=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(x-y\right)\left(z-y\right)}+\frac{xy}{\left(x-z\right)\left(y-z\right)}\) \(M=\frac{yz\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{xz\left(x-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\frac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)
\(M=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{yz\left(y-z\right)-xz\left(x-y+y-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)
\(A=\frac{\left(yz-xz\right)\left(y-z\right)+\left(xy-xz\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)
Tính thế làm gì bạn ê