CMR : 3a + 2b \(⋮\) 17 \(\Leftrightarrow10a+b⋮17\) (a;b \(\in\) Z )
CMR: \(3a+2b⋮17\Leftrightarrow10a+b⋮17\) \((a,b\in Z)\)
(Do phải chứng minh \(3a+2b⋮17\Leftrightarrow10a+b⋮17\)nên ta phải chứng minh hai chiều nhé)
Ta có : \(10a+b=17\Leftrightarrow2\left(10a+b\right)⋮17\)
Ta lại có : \(2\left(10a+b\right)-\left(3a+2b\right)\)
\(=20a+2b-3a-2b\)
\(=17a⋮17\)mà \(2\left(10a+b\right)⋮17\)
\(\Rightarrow3a+2b⋮17\)
Ta có : \(2\left(10a+b\right)-\left(3a+2b\right)\)
\(=20a+2b-3a-2b\)
\(=17a⋮17\)mà \(3a+2b⋮17\)
\(\Rightarrow2\left(10a+b\right)⋮17\)
Do \(\left(2,17\right)=1\Rightarrow10a+b⋮17\)
Vậy \(3a+2b⋮17\Leftrightarrow10a+b⋮17\)
\(Ch\text{ứng}\)\(minh\)\(r\text{ằng}\)\(3a+2b⋮17\Leftrightarrow10a+b⋮17\)
Ta có :
\(3a+2b⋮17\)
\(\Rightarrow9\left(3a+2b\right)⋮17\)
\(\Rightarrow27a+18b⋮17\)
\(\Rightarrow\left(17a+17b\right)+\left(10a+b\right)⋮17\)
\(\Rightarrow10a+b⋮17\)(1)
Ta có :
\(10a+b⋮17\)
\(\Rightarrow2\left(10a+b\right)⋮17\)
\(\Rightarrow20a+2b⋮17\)
\(\Rightarrow17a+3a+2b⋮17\)
\(\Rightarrow3a+2b⋮17\)(2)
Từ (1) và (2) \(\Rightarrow3a+2b⋮17\Leftrightarrow10a+b⋮17\)(đpcm)
_Chúc bạn học tốt_
Chứng Tỏ Rằng: \(3a+3b⋮17\Leftrightarrow10a+b⋮17;\left(a;b\in Z\right)\)
Chứng minh rằng: \(3a+2b\) chia hết cho 17\(\Leftrightarrow10a+b\)chia hết cho 17 \(\left(a,b\in Z\right)\)
sorry anh nha em mới học lớp 5 thôi !
sory anh nha em mới chỉ học lớp 5 mà thôi xin anh thông cảm !
Ta có :3a+2b chia hết cho 17
<=>3a+2b+17a chia hết cho 17 (vì 17a chia hết cho 17)
<=>(3a+17a)+2b chia hết cho 17
<=>20a+2b chia hết cho 17
<=>2(10a+b) chia hết cho 17
Mà (2;17)=1
=>10a+b chia hết cho 17
=>đpcm
cmr nếu 3a+2b chia hết cho 17 thi 10a +b chia hết cho 17(a,b nguyên)
đặt 3a+2b=x ; 10a+b=y
Ta có:x chia hết cho17; cần chứng minhy chia hết cho 17
Xét :10x-3y=10.(3a+2b)-3(10a+b)=30a+20b-30a+3b=17b chia hết cho 17(vì 17 chia hết cho 17)
Nhận tháy:x chia hết cho 17 => 10x chia hết cho 17=>3y chia hết cho 17 mà(3;17)=1 =>y chia hết cho 17 =>10a+b chia hết cho17
VẬY:10a+b chia hết cho 17=>ĐPCM
Cho 3a+2b chia hết cho 17( a,b thuộc N). CMR 10a+b chia hết cho 17
a,Tìm mọi số nguyên thỏa mãn:\(x^2-2x^2=1\)
b,Tìm x: /2x-3/-x=/2-x/
c,Cho f(x)=\(ax^2\)+\(bx+c\)với a,b,c là các số hữu tỉ.Chứng tỏ: f(-2).f(3)\(\le\)0.Biết 13a+b+2c=0
CMR:\(3a+2b\)chia hết cho 17\(\Leftrightarrow10a+b\)chia hết cho 17(a,b \(\in\)Z)
Cho 3a + 2b chia hết cho 17(a, b thuộc N)
CMR: 10a + b chia hết cho 17
Vì 3a + 2b chia hết cho 17
=> 9(3a + 2b) chia hết cho 17 (1)
17 chia hết cho 17 => 17a chia hết cho 17 (2)
17b chia hết cho 17 (3)
Từ (1) (2) và (3) => 9(3a + 2b) - 17a - 17 b chia hết cho 17
=> 27a + 18b - 17a - 17b chia hết cho 17
=> 10a + b chia hết cho 17
cho biết 3a + 2b chia hết cho 17 (a,b thuộc N) CMR : 10a + b chia hết cho 17
bài này áp dụng rất nhiều thứ , rất phức tạp
gợi ý : bạn tìm số nào nhân với 3a + 2b rùi trừ di bn dó là ra cái cần chứng minh
17a:17
=> 17a+3a+2b:17
=> 20a+2b:17
=> 2(10a+b):17
=> 10a+b:17