Cho các số nguyên a ,b , c và a+b+c chia hết cho 4. Chứng minh 3 x a x b x c chia hết cho 6
Cho các số nguyên a,b,c và a+b+c chia hết cho 4.Chứng minh 3.a.b.c chia hết cho 6
a+b+c chia hết cho 4 vậy suy ra có ít nhất 1 số chẵn
Vậy a.b.c chia hết cho 2.
3.a.b.c chia hết cho 3
Vậy 3.a.b.c chia hết cho 6
Cho các số nguyên tố a ,b,c và a+b+c chia hết cho 4 . chứng minh 3.a.b.c chia hết cho 6 ?
cho đa thức F(x)=ax^2 +bc+c biết F(3)+F(-6)chia hết cho 3 vơi a b c là số nguyên và x là số nguyên .Chứng minh c chia hết cho 3
Cho các số nguyên a,b,c và a+b+c chia hết cho 4. Chứng minh 3 số a.b.c chia het cho 6
1) Cho a; b; c thuộc Z thỏa mãn : ( a+b+c) chia hết cho 4 .Chứng minh
[ (a+b)(b+c)(c+a) - abc] chia hết cho 4
2) Tìm các số nguyên x;y biết x2 - (y-3)x-2y-1=0
1) Đặt \(A=\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc\)
\(\Rightarrow A=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
\(\Rightarrow A\)có dạng \(4k-2abc\left(k\in Z\right)\)
Giả sử trong 3 số \(a,b,c\)có 1 số lẻ \(\Rightarrow\)Trong \(a,b,c\)có một số chẵn \(\left(a+b+c=4\right)\)
\(\Rightarrow2abc⋮4\)
Giả sử trong \(a,b,c\)có 1 số chẵn \(\Rightarrow2abc⋮4\)
\(\Rightarrow2abc=4m\)\(\Rightarrow A=4k-4m\). Mà \(4k-4m=4\left(k-m\right)⋮4\Rightarrow A⋮4\)
Vậy \(\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc⋮4\)(đpcm)
1. Tìm những cặp số (x,y) thoả mãn pt:
a) x² - 4x +y - 6√(y) + 13 = 0
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12.
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố
10. Viết số 100 thành tổng các số nguyên tố khác nhau
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)!
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương)
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x
16. a) CM x² + y² = 7z²
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ
1. Tìm những cặp số (x,y) thoả mãn pt:
a) x² - 4x +y - 6√(y) + 13 = 0
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12.
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố
10. Viết số 100 thành tổng các số nguyên tố khác nhau
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)!
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương)
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x
16. a) CM x² + y² = 7z²
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ
1.Chứng minh 2n+5 và 3n+7 là hai số nguyên tố cùng nhau
2. Tính tổng các số nguyên
a) -9<x<10 b)-7 bé hơn hoặc bằng x<8
3. Chứng minh rằng: 3+3^2+3^3+3^4+....+3^20 chia hết cho 12
4. Tìm a,b biết
a) a+b=432,ƯCLN(a,b)=36
b) a.b=864 và ƯCLN(a,b)=6
c) a.b=360 và BCNN(a,b)=60
5.Tính: (-2013) - (57 -2013)
6.a) 2x+7 chia hết cho x-1
2x+3 chia hết cho x-2
Bài 6: (0,5 điểm)
Cho đa thức P(x) = ax2 + bx + c trong đó các hệ số a, b, c là các số nguyên. Biết rằng giá trị của đa thức chia hết cho 5 với mọi giá trị nguyên của x. Chứng minh rằng a, b, c đều chia hết cho 5.
tham khảo
Vì P ( x ) = ax2ax2 + bx + c chia hết cho 5 với mọi giá trị nguyên của x nên :
P ( 0 ) ; P ( 1 ) ; P ( - 1 ) tất cả đều chia đều cho 5 .
Ta có :
P ( 0 ) chia hết cho 5
⇒ a . 02+ b . 0 + c chia hết cho 5
⇒ c chia hết cho 5
P ( 1 ) chia hết cho 5
⇒ a . 12 + b . 1 + c chia hết cho 5
⇒ a + b + c chia hết cho 5
Vì c chia hết cho 5 ⇒ a + b chia hết cho 5 ( 1 )
P ( - 1 ) chia hết cho 5
⇒ a . (−1)2(−1)2 + b . ( - 1 ) + c chia hết cho 5
⇒ a + b + c chia hết cho 5
Từ ( 1 ) ; ( 2 ) ⇒ a + b + a - b chia hết cho 5
⇒ 2a chia hết cho 5
Mà ƯCLN ( 2 ; 3 ) = 1 ⇒ a chia hết cho 5
Vì a + b chia hết cho 5 ; a chia hết cho 5 ⇒ b chia hết cho 5
Vậy a , b , c chia hết cho 5 . ( đpcm )