tìm tất cả các cặp số nguyên tố sao cho tổng và hiệu của 2 số đó là 2 số nguyên tố khác
Bài 1: Tìm tất cả các bộ 2 số nguyên tố sao cho tổng và hiệu của chúng cũng là số nguyên tố.
Bài 2: Tìm số nguyên tố biết rằng số đó bằng tổng của 2 số nguyên tố và cũng bằng hiệu của 2 số nguyên tố khác.
1) +) Nếu cả hai số nguyên tố đều > 3 => 2 số đó lẻ => tổng và hiệu của chúng là số chẵn => Loại
=> Trong hai số đó có 1 số bằng 2. gọi số còn lại là a
+) Nếu a = 3 : ta có 3 + 2 = 5 ; 3 -2 = 1, 1 không là số nguyên tố => Loại
+) Nếu > 3 thì có thể có dạng: 3k + 1 ( k \(\in\)N*) hoặc 3k + 2 (k \(\in\) N*)
Khi a = 3k + 1 => a+ 2 = 3k + 3 = 3.(k + 1) là hợp số với k \(\in\) N* => Loại
Khi a = 3k + 2 => a + 2 = 3k + 4 ; a - 2 = 3k . 3k; 3k + 4 đều là số nguyên tố với k = 1 . Với k > 1 thì 3k là hợp số nên Loại
Vậy a = 3. 1+ 2 = 5
Vậy chỉ có 2 số 2;5 thỏa mãn
Tìm tất cả các số nguyên tố p sao cho p bằng tổng của 2 số nguyên tố . Và p bằng hiệu của 2 số nguyên tố.
Bài 1: Tìm số nguyên tố biết rằng số đó bằng tổng của hai số nguyên tố và bằng hiệu của hai số nguyên tố đó.
Bài 2: Tìm tất cả các số nguyên tố x,y,z sao cho \(x^2 - 6y^2 = 1\)
Bài 1 bạn tham khảo đi có trong các câu hỏi tương tự
Bài 2 : Ta có :
\(x^2-6y^2=1\)
\(\Rightarrow x^2-1=6y^2\)
\(\Rightarrow y^2=\frac{x^2-1}{6}\)
Nhận thấy \(y^2\inƯ\)của \(x^2-1⋮6\)
=> y2 là số chẵn
Mà y là số nguyên tố => y = 2
Thay vào : \(\Rightarrow x^2-1=4\cdot6=24\)
\(\Rightarrow x^2=25\Rightarrow x=5\)
Vậy x=5 ; y =2
Tìm tất cả các số nguyên tố p sao cho mỗi số vừa là tổng vừa là hiệu của 2 số nguyên tố
Dễ thấy p>2 nên p lẻ
Vì p vừa là tổng, vừa là hiệu của 2 số nguyên tố nên 1 số phải chẵn còn số kia lẻ.Số chẵn là 2
Như vậy p=a+2=b-2(a,b là các số nguyên tố)
Mà a=p-2;p;b=p+2 là 3 số lẻ liên tiếp nên có 1 số chia hết cho 3.Vậy phải có 1 số bằng 3.
Nếu a=3=>p=5;b=7
Nếu p=3 =>a=1(ko là số nguyên tố)
Nếu b=3 =>p=1(ko là số nguyên tố)
Vậy số nguyên tố cần tìm là 5
Tìm tất cả các số nguyên tố p sao cho mỗi số vừa là tổng vừa là hiệu của 2 số nguyên tố
BÀi này mình biết
Thấy p>2 nên p lẻ
Vì p vừa là tổng; vừa là hiệu của 2 số nguyên tố nên 1 số phải chẵn còn số kia lẻ.Số chẵn là 2
Như vậy p=a+2=b-2(a,b là số nguyên tố)
Mà p=a+2;p;b=p+2 là ba số lẻ liên tiếp nên có một chữ số chia hết cho 3. Như vậy phải có 1 số = 3
Nếu a = 3; p=5; b=7
Nếu p=3 => a=1(không là số nguyên tố)
Nếu p=3 => b = 5(không là số nguyên tố)
Vậy số nguyên tố cần tìm là 5
Tìm tất cả các số nguyên tố p sao cho p vừa là tổng vừa là hiệu của 2 số nguyên tố.
Xét 2 TH :
1) p chẵn :
p là số nguyên tố chẵn nên nó chỉ có thể là 2, nhưng 2 không thể là tổng 2 số nguyên tố vì 2 là số nguyên tố nhỏ nhất ---> TH 1 không có số nào.
2) p lẻ :
Giả sử p = m+n (m,n là số nguyên tố).Vì p lẻ ---> trong m và n có 1 lẻ, 1 chẵn
Giả sử m lẻ, n chẵn ---> n = 2 ---> p = m+2 ---> m = p-2 (1)
Tương tự, p = q-r (q,r là số nguyên tố).Vì p lẻ ---> trong q và r có 1 lẻ, 1 chẵn
Nếu q chẵn ---> q = 2 ---> p = 2-r < 0 (loại)
---> q lẻ, r chẵn ---> r = 2 ---> p = q - 2 ---> q = p+2 (2)
(1),(2) ---> p-2 ; p ; p+2 là 3 số nguyên tố lẻ (3)
+ Nếu p < 5 ---> p-2 < 3 ---> p-2 không thể là số nguyên tố lẻ
+ Nếu p = 5 ---> (3) thỏa mãn ---> p = 5 là 1 đáp án.
+ Nếu p > 5 :
...Khi đó p-2; p; p+2 đều lớn hơn 3
...- Nếu p-2 chia 3 dư 1 thì p chia hết cho 3 ---> p ko phải số nguyên tố (loại)
...- Nếu p-2 chia 3 dư 2 thì p+2 chia hết cho 3 ---> p+2 ko phải số n/tố (loại)
Vậy chỉ có 1 đáp án là p = 5.
Xét 2 TH :
1) p chẵn :
p là số nguyên tố chẵn nên nó chỉ có thể là 2, nhưng 2 không thể là tổng 2 số nguyên tố vì 2 là số nguyên tố nhỏ nhất ---> TH 1 không có số nào.
2) p lẻ :
Giả sử p = m+n (m,n là số nguyên tố).Vì p lẻ ---> trong m và n có 1 lẻ, 1 chẵn
Giả sử m lẻ, n chẵn ---> n = 2 ---> p = m+2 ---> m = p-2 (1)
Tương tự, p = q-r (q,r là số nguyên tố).Vì p lẻ ---> trong q và r có 1 lẻ, 1 chẵn
Nếu q chẵn ---> q = 2 ---> p = 2-r < 0 (loại)
---> q lẻ, r chẵn ---> r = 2 ---> p = q - 2 ---> q = p+2 (2)
(1),(2) ---> p-2 ; p ; p+2 là 3 số nguyên tố lẻ (3)
+ Nếu p < 5 ---> p-2 < 3 ---> p-2 không thể là số nguyên tố lẻ
+ Nếu p = 5 ---> (3) thỏa mãn ---> p = 5 là 1 đáp án.
+ Nếu p > 5 :
...Khi đó p-2; p; p+2 đều lớn hơn 3
...- Nếu p-2 chia 3 dư 1 thì p chia hết cho 3 ---> p ko phải số nguyên tố (loại)
...- Nếu p-2 chia 3 dư 2 thì p+2 chia hết cho 3 ---> p+2 ko phải số n/tố (loại)
Vậy chỉ có 1 đáp án là p = 5.
Xét 2 TH :
1) p chẵn :
p là số nguyên tố chẵn nên nó chỉ có thể là 2, nhưng 2 không thể là tổng 2 số nguyên tố vì 2 là số nguyên tố nhỏ nhất ---> TH 1 không có số nào.
2) p lẻ :
Giả sử p = m+n (m,n là số nguyên tố).Vì p lẻ ---> trong m và n có 1 lẻ, 1 chẵn
Giả sử m lẻ, n chẵn ---> n = 2 ---> p = m+2 ---> m = p-2 (1)
Tương tự, p = q-r (q,r là số nguyên tố).Vì p lẻ ---> trong q và r có 1 lẻ, 1 chẵn
Nếu q chẵn ---> q = 2 ---> p = 2-r < 0 (loại)
---> q lẻ, r chẵn ---> r = 2 ---> p = q - 2 ---> q = p+2 (2)
(1),(2) ---> p-2 ; p ; p+2 là 3 số nguyên tố lẻ (3)
+ Nếu p < 5 ---> p-2 < 3 ---> p-2 không thể là số nguyên tố lẻ
+ Nếu p = 5 ---> (3) thỏa mãn ---> p = 5 là 1 đáp án.
+ Nếu p > 5 :
...Khi đó p-2; p; p+2 đều lớn hơn 3
...- Nếu p-2 chia 3 dư 1 thì p chia hết cho 3 ---> p ko phải số nguyên tố (loại)
...- Nếu p-2 chia 3 dư 2 thì p+2 chia hết cho 3 ---> p+2 ko phải số n/tố (loại)
Vậy chỉ có 1 đáp án là p = 5.
Tìm tất cả các số nguyên tố p sao cho p vừa là tổng vừa là hiệu của 2 số nguyên tố.
Dễ thấy p>2 nên p lẻ
Vì p vừa là tổng, vừa là hiệu của 2 số nguyên tố nên 1 số phải chẵn còn số kia lẻ.Số chẵn là 2
Như vậy p=a+2=b-2(a,b là các số nguyên tố)
Mà a=p-2;p;b=p+2 là 3 số lẻ liên tiếp nên có 1 số chia hết cho 3.Vậy phải có 1 số bằng 3.
Nếu a=3=>p=5;b=7
Nếu p=3 =>a=1(ko là số nguyên tố)
Nếu b=3 =>p=1(ko là số nguyên tố)
Vậy số nguyên tố cần tìm là 5
Dễ thấy p>2 nên p lẻ
Vì p vừa là tổng, vừa là hiệu của 2 số nguyên tố nên 1 số phải chẵn còn số kia lẻ.Số chẵn là 2
Như vậy p=a+2=b-2(a,b là các số nguyên tố)
Mà a=p-2;p;b=p+2 là 3 số lẻ liên tiếp nên có 1 số chia hết cho 3.Vậy phải có 1 số bằng 3.
Nếu a=3=>p=5;b=7
Nếu p=3 =>a=1(ko là số nguyên tố)
Nếu b=3 =>p=1(ko là số nguyên tố)
Vậy số nguyên tố cần tìm là 5
nếu p =tổng 2 số nguyên tố lẻ =>p chia hết cho 2(trái giả thuyết)
=>p=2+k(k là 1 số nguyên tố lẻ )
nếu p =hiệu 2 số nguyên tố lẻ =>p chia hết cho 2(trái giả thuyết)
=>p=m(m là 1 số nguyên tố lẻ) -2
nếu k=3=>p=5=2+3=7-2 (thỏa mãn)
nếu k=3q+1=>p=3q+1+2=3q+3=3(q+1) là hợp số (trái giả thuyết)
nếu k=3q+2=>m=3q+2+2+2=3q+6=3(q+2) là hợp số (trái giả thuyết)
vậy p = 5
Tìm tất cả các số nguyên tố P sao cho P bằng tổng 2 số nguyên tố bằng hiệu hai số nguyên tố
Tập tất cả các số nguyên tố p sao cho p vừa là tổng, vừa là hiệu của 2 số nguyên tố.
Xét 2 TH :
1) p chẵn :
p là số nguyên tố chẵn nên nó chỉ có thể là 2, nhưng 2 không thể là tổng 2 số nguyên tố vì 2 là số nguyên tố nhỏ nhất ---> TH 1 không có số nào.
2) p lẻ :
Giả sử p = m+n (m,n là số nguyên tố).Vì p lẻ ---> trong m và n có 1 lẻ, 1 chẵn
Giả sử m lẻ, n chẵn ---> n = 2 ---> p = m+2 ---> m = p-2 (1)
Tương tự, p = q-r (q,r là số nguyên tố).Vì p lẻ ---> trong q và r có 1 lẻ, 1 chẵn
Nếu q chẵn ---> q = 2 ---> p = 2-r < 0 (loại)
---> q lẻ, r chẵn ---> r = 2 ---> p = q - 2 ---> q = p+2 (2)
(1),(2) ---> p-2 ; p ; p+2 là 3 số nguyên tố lẻ (3)
+ Nếu p < 5 ---> p-2 < 3 ---> p-2 không thể là số nguyên tố lẻ
+ Nếu p = 5 ---> (3) thỏa mãn ---> p = 5 là 1 đáp án.
+ Nếu p > 5 :
...Khi đó p-2; p; p+2 đều lớn hơn 3
...- Nếu p-2 chia 3 dư 1 thì p chia hết cho 3 ---> p ko phải số nguyên tố (loại)
...- Nếu p-2 chia 3 dư 2 thì p+2 chia hết cho 3 ---> p+2 ko phải số n/tố (loại)
Vậy chỉ có 1 đáp án là p = 5.
Tìm tất cả các số nguyên tố p sao cho p bằng tổng của hai số nguyên tố và bằng hiệu của hai số nguên tố.