Cho bt p(x)=ax^3+bx^2+cx+d (a,b,c,d thuộc R).Biết 13a-6b+4c=0
CM: p(1/2).p(-2) có giá trị không âm
Cho đa thúc P(x) = ax3+bx2+cx+d (a,b,c,d thuộc R) Biết 13a-6b+4c = 0 . Chứng minh P(1/2) . P(-2)
Cho đa thức P(x) = ax3+bx2+cx+d (a,b,c,d thuộc R) . Biết 13a-6b+4c=0.Chứng minh P(\(\frac{1}{2}\)) . P(-2) >_ 0
cho đa thức P(x)=ax^+bx^2+cx+d ( a b c d thuộc R) biết 13-6b+4c=0
chứng minh P(1/2).P(-2)≥0
thay x = 1/2 va p=2 vao P(x) roi rut ra thanh bieu thuc =0
là sao hả bn
mik đã thay vào nhưng k ra
CHo đa thức P(x)= ax3+bx2+cx+ (a,b,c,d \(\in R\))
Biết 13a-6b+4c=0
CMR: P\(\left(\frac{1}{2}\right)\).P(-2) \(\ge\)0
Cho hàm số ;p(x)=ax^2+bx^2+cx+d
Biết;13a-b+4c=0
CM;P(1/2).p(-2)=0
cho đa thức P(x) = \(ax^3+bx^2+cx+d\) . Biết 13a-6b+4c=0 . CMR : \(P\left(\dfrac{1}{2}\right).P\left(-2\right)\ge0\)
Lời giải:
Ta có:
\(P\left(\frac{1}{2}\right)=\frac{a}{8}+\frac{b}{4}+\frac{c}{2}+d=\frac{1}{8}(a+2b+4c+8d)\)
\(\Rightarrow 8P\left(\frac{1}{2}\right)=a+2b+4c+8d(1)\)
\(P(-2)=-8a+4b-2c+d\)
\(\Rightarrow 8P(-2)=-64a+32b-16c+8d(2)\)
Từ \((1); (2)\Rightarrow 8P(\frac{1}{2})-8P(-2)=(a+2b+4c+8d)-(-64a+32b-16c+8d)\)
\(=65a-30b+20c\)
\(=5(13a-6b+4c)=0\)
Do đó: \(8P(\frac{1}{2})=8P(-2)\Leftrightarrow P(\frac{1}{2})=P(-2)\)
\(\Rightarrow P(\frac{1}{2})P(-2)=[P(-2)]^2\geq 0\)
Ta có đpcm.
cho da thuc P(x)=ax^3+bx^2+cx+d biet 13a-6b+ac=0
Cho đa thức f(x)=ax^2+bx+c với a,b,c thuộc R biết 13a+b +2c=0 . Chứng minh f(-2). f(3)<0
Bạn ơi đề sai đấy đáng ra bắt c/m f(-2).f(3)\(\le0\)nha bạn
ta có f(x)=ax2+bx+c
\(\hept{\begin{cases}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{cases}}\)
Xét tổng f(-2)+f(3)=(4a-2b+c)+(9a+3b+c)
=4a-2b+c+9a+3b+c
=13a+b+2c
Lại có 13a+b+2c=0 (giả thiết)
=> f(-2)+f(3)=0
=> f(-2)=-f(3)
=> f(-2).f(3)=f(-2).[-f(-2)]
=-[f(-2)2 ]
Do [f(-2)2 ] \(\ge0\)=> -[f(-2)2 ]\(\le0\)
=> f(-2).f(3)\(\le0\)(đpcm)
Ta có:
f(-2) = a.(-2)2 + b.(-2) + c = 4a - 2b + c
f(3) = a.32 + b.3 + c = 9a + 3b + c
Suy ra: f(-2) + f(3) = 13a + b + 2c. Do đó f(-2).f(3) < 0 (đpcm)
Cho f(x)=ax^3+bx^2+cx+d với a;;b;c;d thuộc Z
Biết f(x) chia hết cho 3 với mọi giá trị x thuộc Z.
Chứng minh a;b;c;d chia hết cho 3