Chứng minh rằng:\(x^{200}+x^{100}+1⋮x^4+x^2+1\) với mọi x thuộc Z
Cho x thuộc Z, chứng minh rằng \(x^{200}+x^{100}+1⋮x^4+x^2+1\)
\(A=x^{200}+x^{100}+1\)
\(=x^{200}-x^2+x^{100}-x^4+x^4+x^2+1\)
\(=x^2\left(x^{198}-1\right)+x^4\left(x^{96}-1\right)+\left(x^4+x^2+1\right)\)
\(=x^2\left(x^{^6}-1\right).A+x^4\left(x^6-1\right).B+x^4+x^2+1\)
\(x^6-1=\left(x^3-1\right)\left(x^3+1\right)=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)=\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)\)
Vậy \(A⋮\left(x^4+x^2+1\right)\)
cho x thuộc Z. chứng minh rằng :x200+x100+1 chia hết x4+x2+1
1.cho x thuộc Z, chứng minh rằng x^200+x^100+1 chia het cho x^4+x^2+1
2.tìm các số tự nhiênx,y,z thỏa mãn phương trình:2016^x+2017^y=2018^z
cho x thuộc Z chứng minh rằng x200 +x100+1chia hết cho x4+x2+1
Ta có: \(\left(x^{200}+x^{100}+1\right)=\left(x^{100}+1\right)^2\)
\(\left(x^4+x^2+1\right)=\left(x^2+1\right)^2\)
Vì \(1⋮1;x^{100}⋮x^2\forall x\)
\(\Rightarrow x^{100}+1⋮x^2+1\forall x\)
\(\Rightarrow Vớix\in Z,\left(x^{200}+x^{100}+1\right)⋮\left(x^4+x^2+1\right)\)
Cho x thuộc Z, chứng minh rằng x^200+x^100+1 chia hết cho x^4+x^2+1
Ai trả lời nhanh mình tích cho thật nhiều nhé.
cho x thuộc Z . Chứng minh rằng :
\(x^{200}+x^{100}+1\) chia hết cho \(x^4+x^2+1\)
Làm hộ mình với nha ^_^
cho x thuộc Z. chứng minh rằng :x200+x100+1 chia hết x4+x2+1
tìm nghiệm nguyên (x,y) của phương trình \(x^2+\left(x+y\right)^2=\left(x+9\right)^2...\)
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2 =0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| < |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)
2 = 0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2