tìm giá trị nhỏ nhất của biểu thức P=x^2 + xy + y^2 - 3x -3y+16
Tim x : (x^4+2x^3+10x+25) : (x^2 + 5)=3
tìm giá trị nhỏ nhất của biểu thức P=x^2 + xy + y^2 - 3x -3y+16
Tìm giá trị nhỏ nhất của biểu thức A=x^2 +xy +y^2 -3x -3y
tìm giá trị nhỏ nhất của biểu thức
x2+xy+y2-3x-3y
tìm giá trị nhỏ nhất của biểu thức
x2+xy+y2-3x-3y
tìm giá trị nhỏ nhất của biểu thức A = x2+xy+y2-3x-3y
A=x^2-2x+y^2-2y-x-y+xy
A+3=x^2-2x+1+y^2-2y+1-x-y+xy+1=(x-1)^2+(y-1)^2+(x-1)(y-1)
dat x-1=a;y-1=b
=>A+3=a^2+b^2+ab =a^2+1/4b^2+ab+3/4b^2=(a+1/2b)^2+3/4b^2
=>A+3>=0 <=>x=1;y=1
=>Amin =-3<=> x=1;y=1
tìm giá trị nhỏ nhất của biểu thức A = x2+xy+y2-3x-3y
Tìm giá trị nhỏ nhất của biểu thức: P= x2 + xy +y2 - 3x - 3y +2015
\(P=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+xy-x-y+1+2012=\left(x-1\right)^2+\left(y-1\right)^2-\left(x-1\right)\left(y-1\right)+2012\)
\(P=\left(\left(x-1\right)^2-\left(x-1\right)\left(y-1\right)+\frac{\left(y-1\right)^2}{4}\right)+\frac{3\left(y-1\right)^2}{4}+2012=\left(x-1-\frac{y-1}{2}\right)^2+\frac{3\left(y-1\right)^2}{4}+2012\ge2012\)
=> Min P=2012 <=> \(\frac{2x-2-y+1}{2}=0\Leftrightarrow2x-y-1=0\) và \(\frac{3\left(y-1\right)^2}{4}=0\Leftrightarrow y=1\)=> \(2x-1-1=0\Leftrightarrow x=1\)
Cho x,y,z thỏa mãn xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức 3x^2 + 3y^2 +z^2
ta có \(xy\le\left(\frac{x+y}{2}\right)^2\) và \(yz+xz=z\left(x+y\right)\le\frac{z^2+\left(x+y\right)^2}{2}\)
\(\Rightarrow5=xy+yz+xz\le\left(\frac{x+y}{2}\right)^2+\frac{z^2+\left(x+y\right)^2}{2}=\frac{3}{4}\left(x+y\right)^2+\frac{1}{2}z^2\)
Xét \(3x^2+3y^2+z^2\ge\frac{3}{2}\left(x+y\right)^2+z^2=2\left(\frac{3}{4}\left(x+y\right)^2+\frac{1}{2}z^2\right)\ge2\cdot5=10\)
dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\z=x+y\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=\pm1\\z=\pm2\end{cases}}}\)
Cho x,y,z thuộc R thỏa mãn xy + yz + zx = 5. Tìm giá trị nhỏ nhất của biểu thức 3x^2 + 3y^2 + z^2
tìm giá trị nhỏ nhất của biểu thức
A = x2+xy+y2-3x-3y-2009
2A=[x2+2xy+y2-2(x+y)+1]+(x2-4x+4)+(y2-4y+4)-2018
=(x+y-1)+(x-2)2+(y-2)2-2018
Min=1006 tai x=2=y