Chứng minh \(n^5-n\) chia hết cho 30 với mọi n.
Chứng minh n5 - n chia hết cho 30 với mọi n.
Chứng minh rằng n5-n chia hết cho 30 với mọi n thuộc N
Chứng minh rằng n5-n chia hết cho 30 với mọi n thuộc N
chia hết cho 3: Tích của ba số tự nhiên liên tiếp
Chia hết cho 5: Tích của 5 số tự nhiên liên tiếp
chứng minh n^5 - n chia hết cho 30 với mọi số nguyên n.
chứng minh rằng n5 -n chia hết cho 30 với mọi n thuộc N
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Dễ thấy (n-1)n(n+1) là tích của 3 số tự nhiên liên tiếp nên (n-1)n(n+1) chia hết cho 2 và 3
=>(n-1)n(n+1)(n2+1) chia hết cho 2 và 3 <=> n5-n chia hết cho 2 và 3 (*)
Xét 5 trường hợp: n=5k; n=5k+1; n=5k+2; n=5k+3; n=5k+4 bạn sẽ suy ra n5-n luôn chia hết cho 5 nhé
Kết hợp với phần (*) sẽ suy ra nó luôn chia hết cho 30
Bài 6
a, chứng minh rằng với mọi số tự nhiên n thuộc N thì 60n +15 chia hết cho 15 nhưng không chia hết cho 30
b, chứng minh rằng không có số tự nhiên nào chia 15 dư 6 , chia 9 dư 1
c, chứng minh rằng 1005a +2100b chia hết cho 15 , với mọi số tự nhiên a,b thuộc N
d, chứng minh rằng A= n2+n+1 không chia hết cho 2 và 5 với mọi số tự nhiên n thuộc N
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
Chứng minh: n5 - n chia hết cho 30 với mọi n thuộc Z
ta có
A=n^5-n
=n(n^4-1)
=n(n-1)(n+1)(n^2+1)
n(n-1)(n+1) chia hết cho 6(1)
nếu n=5k => A chia hết cho 5.6=30
nếu n=5k+1 =>n -1 chia hết cho 5 =>từ 1=> A chia hết cho 30
Nếu n=5k+2 =>t n^2+1=25k^2+20k+5 chia hết cho 5
từ 1=> A chia hết cho 30
nếu n=5k+3 =>^2+1=25k^2+30k+10 chia hết cho 5
=>A chia hết cho 30
Nếu n=5k+4 =>n+1=5k+5 chia hết cho 5
từ 1=>A chia hết cho 30
Vậy với n nguyên dương thì n^5-n chia hết cho 30
cho A = n5 + 59n + 60 . chứng minh A chia hết cho 30. với mọi n thuộc N
cho A = n5 + 59n + 60 . chứng minh A chia hết cho 30. với mọi n thuộc N