A=2004x+1 / 2005x-2005
Tìm x thuộc Z để A lớn nhất
bài 1:
a,A=-x^5+2005x^4-2004x^3-x^2+2004x+2005 với x=2004
b,B=x^5-2005x^4+2007x^3-6014x^2+4007x với x=2004
bài 2: cho A=2x^2+3y;B=9x^2+5y
a,Tính 9A-2B
b,Chứng minh A chia hết cho 17 khi B chia hết cho 17 với mọi x,y thuộc Z
với x thuộc z, hãy so sánh
a)2004x và 2005x b)x2 và 5x
a)Vì 2004.x và 2005.x có:
x=x mà 2004<2005
=>2004.x<2005.x
Xin lội câu B tớ ko làm được vì ko biết x<5 hoặc x=5
a, TH1 x < 0
=> 2004x âm ; 2005x âm
=>2004x>2004x+x
TH2 x > 0
=> 2004x dương ; 2005x dương
=> 2004x<2004x+x
TH3 x=0
=>2004x = 0 ; 2005x = 0
=> 2004x = 2005x
Câu b cg tương tự
với x thuộc N, hãy so sánh
a) 2004x với 2005x
b) x^2 với 5x
ai nhanh mình tick
Cho biểu thức:
A=\(\frac{2004x+1}{2005x-2005}\)với x\(\ne\)1
Tìm số nguyên x để A đạt GTLN?Tìm GTLN đó
\(A=\frac{2004x+1}{2005x-2005}=\frac{2004x+1}{2005\left(x-1\right)}=\frac{2004\left(x-1\right)+2005}{2005\left(x-1\right)}=\frac{2004}{2005}+\frac{1}{x-1}\)
\(A_{max}\Leftrightarrow\frac{1}{x-1}max\)
Nếu x > 1 thì x-1 < 0 \(\Rightarrow\frac{1}{x-1}>0\)
Nếu x<1 thì x-1 <0 \(\Rightarrow\frac{1}{x-1}< 0\)
Xét \(x>1;\)ta có
\(\frac{1}{x-1}max\)=> x-1 là số nguyên dương nhỏ nhất
\(\Rightarrow x-1=1\Rightarrow x=2\left(t/m\right)\)
Vậy \(B_{max}=1\frac{2004}{2005}\Leftrightarrow x=2\)
cho x thuoc z . so sanh
a/2004x va 2005x
b/x mu 2 va 5x
trinh bay loi giai ro rang nha
a. Nếu x>0=> 2004x<2005x
Nếu x=0=> 2004x=2005x
Nếu x<0=> 2004x>2005x
b.Nếu x<5=> ...
...
tim x
a) x4 +2005x2 +2004x+2005
Giải Phương Trình
2004x/2x^2+x+1+2005x/2x^2+x+1=902
\(\frac{2004x}{2x^2+x+1}+\frac{2005x}{2x^2+x+1}=902\)
\(\Leftrightarrow\frac{2004x+2005x}{2x^2+x+1}=902\)
\(\Leftrightarrow\frac{4009x}{2x^2+x+1}=902\)
\(\Leftrightarrow4009x=902\left(2x^2+x+1\right)\)
\(\Leftrightarrow4009x=1804x^2+902x+902\)
\(\Leftrightarrow-1804x^2+3107x=902\)
Bn tự làm tiếp. Số to quá bn -.-
Giải phương trình : \(\frac{2004x}{2x^2+x+1}+\frac{2005x}{2x^2+2x+1}=902\)
Với giả sử rằng \(x\ne0\) thì ta biến đổi phương trình đã cho dưới dạng:
\(\frac{2004}{2x+1+\frac{1}{x}}+\frac{2005}{2x+2+\frac{1}{x}}=902\) \(\left(1\right)\)
Đặt \(2x+\frac{1}{x}+1=t\) \(\left(2\right)\) \(\Rightarrow\) \(2x+\frac{1}{x}+2=t+1\) thì phương trình \(\left(1\right)\) trở thành:
\(\frac{2004}{t}+\frac{2005}{t+1}=902\)
\(\Leftrightarrow\) \(\frac{2004\left(t+1\right)+2005t}{t\left(t+1\right)}=902\)
Khử mẫu ở hai vế của phương trình trên, ta được:
\(2004\left(t+1\right)+2005t=902t\left(t+1\right)\)
\(\Leftrightarrow\) \(2004t+2004+2005t=902t^2+902t\)
\(\Leftrightarrow\) \(902t^2-3107t-2004=0\)
\(\Leftrightarrow\) \(\left(t-4\right)\left(902t+501\right)=0\)
\(\Leftrightarrow\) \(t=4\) hoặc \(t=-\frac{501}{902}\)
\(\text{*)}\) Với \(t=4\) thì từ \(\left(2\right)\) \(\Rightarrow\) \(2x+\frac{1}{x}+1=4\) \(\Leftrightarrow\) \(2x+\frac{1}{x}=3\) \(\Leftrightarrow\) \(2x^2+1=3x\) (do \(x\ne0\))
\(\Leftrightarrow\) \(2x^2-3x+1=0\) \(\Leftrightarrow\) \(\left(x-1\right)\left(2x-1\right)=0\) \(\Leftrightarrow\) \(x=1\) hoặc \(x=\frac{1}{2}\) (thỏa mãn)
\(\text{*)}\) Với \(t=-\frac{501}{902}\) thì từ \(\left(2\right)\) \(\Rightarrow\) \(2x+\frac{1}{x}+1=-\frac{501}{902}\) (vô nghiệm)
Vậy, tập nghiệm của phương trình \(\left(1\right)\) là \(S=\left\{1;\frac{1}{2}\right\}\)
Phân tích thành nhân tử x4 + 2005x2 +2004x + 2005
x4 + 2005x2 + 2004x + 2005
=x4+2005x2+2005x-x+2005
=x4-x+2005x2+2005x+2005
=x(x3-1)+2005.(x2+x+1)
=x(x-1)(x2+x+1)+2005.(x2+x+1)
=(x2+x+1)[x(x-1)+2005]
=(x2+x+1)(x2-x+2005)