tìm x thuộc z sao cho:
(2x+1) chia hết (x-3)
Tìm x thuộc Z sao cho: a) 2x + 3 chia hết cho x; b) 8x + 4 chia hết cho 2x - 1; c*) x2 - 5x + 7 chia hết cho x- 5
Tìm x thuộc Z sao cho:
a) 2x + 3 chia hết cho x;
b) 8x + 4 chia hết cho 2x - 1;
c) x 2 - 5 x + 7 chia hết cho x- 5.
Bài 1 : Tìm n thuộc N* sao cho: n^2 + 9n -2 chia hết cho 11.
Bài 2: Tìm x thuộc Z sao cho x^3 - 8x^2 + 2x chia hết cho x^2 +1
Tìm x thuộc Z sao cho: a) 3x + 5 chia hết cho x; b) 4x + 11 chia hết cho 2x + 3; c) x 2 + 2x -11 chia hết cho x + 2
Tìm x thuộc Z sao cho: a) x + 6 chia hết cho x; b) x+ 9 chia hết cho x +1; c) 2x +1 chia hết cho x -1
Tìm x thuộc Z sao cho 2x + 1 chia hết cho x - 1
Bài 1:Cho a1,a2,....,a2018 thuộc Z
CMR:a1+a2+...+a2018 chia hết cho 30 khi và chỉ khi a1^5 + a2^5 +...+ a2018^5 chia hết cho 30\
Bài 2: Tìm x,y thuộc N* sao cho x+y+1 chia hết cho xy
Bài 3: tìm x,y thuộc N* sao cho y+1 chia hết cho x, x+1 chia hết cho y
Bài 4:Tìm x,y thuộc N* sao cho y+2 chia hết cho x, x+2 chia hết cho y
Bài 5: Tìm x,y thuộc N* sao cho 2x+1 chia hết cho y, 2y+1 chia hết cho x
Bài 6: CMR: Với mọi n thuộc Z ta có n^5 + 5n chia hết cho 6
Bài 7:CMR: Với mọi n thuộc Z ta có n(2n+7)(7n+1) chia hết cho 6
Giúp mình nhé, cảm ơn các bạn nhiều!!!
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
Tìm x thuộc Z sao cho: (3x+1) chia hết cho (2x+3)
Giải
\(\left(3x+1\right)⋮\left(2x+3\right)\)
\(\Leftrightarrow\left[4\left(3x+1\right)\right]⋮\left(2x+3\right)\)
\(\Leftrightarrow\left[12x+4\right]⋮\left(2x+3\right)\)
\(\Leftrightarrow\left(12x+18-14\right)⋮\left(2x+3\right)\)
\(\Leftrightarrow\left[6\left(2x+3\right)-14\right]⋮\left(2x+3\right)\)
Vì \(\left[6\left(2x+3\right)\right]⋮\left(2x+3\right)\) nên \(14⋮\left(2x+3\right)\)
\(\Leftrightarrow2x+3\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
Mà 2x + 3 là số lẻ nên \(2x+3\in\left\{\pm1;\pm7\right\}\)
Ta có bảng sau :
2x + 3 | -1 | 1 | 17 | -17 |
x | -2 | -1 | 7 | -10 |
Vậy x \(\in\) { -2 ; -1 ; 7 ; -10 }
Có \(\left(3x+1\right)⋮\left(2x+3\right)\)
\(\Rightarrow6x+2⋮2x+3\)
\(\Rightarrow6x+9-7⋮2x+3\)
\(\Rightarrow7⋮2x+3\)
\(\Rightarrow2x+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Với 2x + 3 = 1 => x = -1 (tm)
Với 2x + 3 = -1 => x = -2 (tm)
Với 2x + 3 = 7 => x = 2 (tm)
Với 2x + 3 = -7 => x = -5 (tm)
Vậy...
Tìm x thuộc Z sao cho: a) 5x + 7 chia hết cho x; b) 6x + 4 chia hết cho 2x - l; c) x 2 - 3x + 7 chia hết cho x - 3
Tìm x thuộc Z sao cho: a) 6x + 3 chia hết cho x; b) 4x + 4 chia hết cho 2x - l; c) x 2 -9x + 7 chia hết cho x - 9