Chứng minh rằng: 5n3+15n2+10 chia hết cho 30
Đặt P = n5 - 5n3 + 4n
= n5 - n3 - 4n3 + 4n
= n3(n2 - 1) - 4n(n2 - 1)
= n3(n - 1)(n + 1) - 4n(n - 1)(n + 1)
= (n - 1)n(n + 1)(n2 - 4)
= (n - 2)(n - 1)n(n + 1)(n + 2) (tích 5 số nguyên liên tiếp)
=> P \(⋮3;5;8\)
mà (3;5;8) = 1
=> P \(⋮3.5.8=120\)
a,Chứng minh rằng: 10 ^ 50 + 8 chia hết cho 9
b,10 ^ 60 - 5 chia hết cho 3
c, C = 5 + 5^2+ ....+ 5^8 chia hết cho 30
Bài 2:
1.Chứng minh rằng : 9999931999 - 555551997 chia hết cho 5
2.Chứng minh rằng : 1725 - 1321 + 244 Chia hết cho 10
3. Chứng minh rằng: 172008 - 112008 - 32008 + 1 chia hết cho 10
a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.
b)
Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)
c) Cách làm tương tự câu b.
Chứng minh rằng 516+330 chia hết cho 10.
Lời giải:
$5^{16}$ là số lẻ và chia hết cho 5 nên có tận cùng là $5$.
$3^{30}=(3^2)^{15}=9^{15}\equiv (-1)^{15}\equiv -1\equiv 9\pmod {10}$
$\Rightarrow 3^{30}$ có tận cùng là $9$.
Vậy $5^{16}+3^{30}$ có tận cùng là $4$
$\Rightarrow 5^{16}+3^{30}$ không chia hết cho $10$
Chứng minh rằng
a) 36^36 - 9^10 chia hết cho 45
b) 7^n+4 - 7^n chia hết cho 100
c) 7^1000 - 3^1000 chia hết cho 10
d) 20^15 -1 chia hết cho 11
e) 2^30 + 3^30 chia hết cho 13
f) 555^222 + 222^555 chia hết cho 7
1/Chứng minh rằng : tích 5 số tự nhiên liên tiếp luôn luôn chia hết cho 30.
2/Tìm số bị chia & số chia, biết rằng khi + số bị chia với 10 và nhân số chia với 10 thì thương không thay đổi.
3/Cho 10 số tự nhiên bất kỳ: a1, a2,....a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10
Chứng minh rằng
71000 - 301000chia hết cho 10
71000 ,là 1 số lẻ . 301000 luân là số chẵn mà ; 1 số chẵn trừ đi 1 số lẻ bao giờ cũng cho kết quả lẻ
nên 71000- 301000 = ( 1 số lẻ ) không thể chia hết cho 10 đâu THANH ạ
Chắc bạn đánh sai đề, đúng ra phải là 3 chứ không phải 30 đâu Thanh ơi
Ta có
71000 =(7^4)^250=2401^250=(.....1)
3^1000=(3^4)^250=81^250(.....1)
Suy ra 7^1000-3^1000=(....1)-(.....1)=(......0)
Do 7^1000-3^1000 có tận cùng là 0 nên chia hết cho 10
chứng minh rằng : \(5n^3+15n^2+10\)chia hết cho 30
chứng minh rằng \(3^{4n+4}-4^{3n+3}\)chia hết cho 17 (n thuộc N)
Bài 1:chứng tỏ C=1+7+72+...+730 không chia hết cho 57
bài 2 chứng minh không có số nào chia 15 dư 6 còn chia 9 dư 4
bài 3 chứng minh rằng tổng của 3 số tự nhiên liên tiếp thì chia hết cho 3, còn tổng của 4 số thì không chia hết cho 4
bài 4: chứng minh rằng với n thược tập N ta có :
60n+15 chia hết 15
nhưng 60n +15 không chia hết cho 30
làm đúng 1 câu cho 2 tick làm đúng cả cho 10 tick