Bài 1. Rút gọn
(a-b). (c+d) - (c+a) . (b-d) - (-a+d) . (b-c)
Bài 1: bỏ dấu ngoặc rồi rút gọn biểu thức a, - ( - a + c - d ) - ( c - d + d) b, - ( a + b - c + d ) + (a - b - c - d) c, a( b - c - d ) - a( b + c -d ) d*, (a + b).(c+d) - ( a+d).(b+c) e*, (a+b).(c-d) - (a-b).(c+d) f*, (a+b)2 - (a-b)2
a, -( -a + c - d) - ( c - d + d) = a - c + d - c + d - d = a + d
b, - ( a+b-c+d) + (a-b-c-d) = -a -b+c-d + a-b-c-d = -2b + (-2c)= -2(b+c)
bài 1 bỏ dấu ngoặc rồi rút gọn biểu thức a)-(-a+c-d) - (c-d+a) b)- (a+b-c+d) + (a-b-c-d) c)a(b-c-d)- a(b+c-d)
mng giáo viên hà ngọc thắng giải cho
Bài 1. Rút gọn biểu thức:
a) A=(a+b)3-(a-b)3
b) A=(u-v)3+3uv(u+v)
c) C=6(c-d)(c+d)+2(c-d)2-(c-d)3
Bài 2. Tính nhanh:
a) 1013 b) 2993 c) 993
a. A = (a + b)3 - (a - b)3
A = \(\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
A = (a + b - a + b)\(\left[a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right]\)
A = 2b(a2 + a2 + a2 + 2ab - 2ab + b2 - b2 + b2)
A = 2b(3a2 + b2)
A = 6a2b + 2b3
Bài 1: bỏ dấu ngoặc rồi rút gọn biểu thức
a, - ( - a + c - d ) - ( c - d + d)
b, - ( a + b - c + d ) + (a - b - c - d)
c, a( b - c - d ) - a( b + c -d )
d*, (a + b).(c+d) - ( a+d).(b+c)
e*, (a+b).(c-d) - (a-b).(c+d)
f*, (a+b)2 - (a-b)2
tích mình với
ai tích mình
mình tích lại
thanks
Bài 1 : Rút gọn
a) (a + b + c + d) (a - b -c - d)
b) (a - b - c - d) (a + b - c - d)
c) (a - b - c) ( a2 + b2 + c2 + 2ab - ac - bc)
d) (a - b - c + d) (a + b - c - d)
e) (a - b - c) ( a2 + b2 + c2 - 2ab + ac - bc)
a) (a + b + c + d)(a - b - c - d)
= a(a + b + c + d) - b(a + b + c + d) - c(a + b + c + d) - d(a + b + c + d)
= (aa + ab + ac + ad) - (ba + bb + bc + bd) - (ca + cb + cc + cd) - (da + db + dc + dd)
= aa - bb - cc - dd
bỏ dấu ngoặc rồi rút gọn
1) -a(-a+c-d)-(c-a+d)
2) -(a+b)-(c+d)+(a-b-c-d)
3) a(b-c-a)-a(b+c-d)
1) -a(-a+c-d)-(c-a+d)
=ad-ac+a2-c+a-d
2) -(a+b)-(c+d)+(a-b-c-d)
=-a-b-c-d+a-b-c-d
=-2b-2c-2d
3) a(b-c-a)-a(b+c-d)
=-ac+ab-a2+ad-ac-ab
=ad-2ac-a2
Rút gọn các tổng sau:
a, (a - b + c - d) - (a +b + c + d)
b, (- a + b - c) + (a - b) - (a - b - c)
c, - (a - b - c) + (b - c + d) - ( - a + b + d)
a) = a - b + c - d - a - b - c - d
= -2b - 2d
b) = -a + b - c + a - b - a + b + c
= -a + b
c) = -a + b + c + b - c + d + a - b - d
= b
a) = a - b + c - d - a - b - c - d
= -2b - 2d
b) = -a + b - c + a - b - a + b + c
= -a + b
c) = -a + b + c + b - c + d + a - b - d
= b
Bỏ ngoặc rồi rút gọn biểu thức:
a) - ( - a + c – d ) – ( c – a + d ) ; b) – ( a + b - c + d ) + ( a – b – c –d )
c) a( b – c – d ) – a ( b + c – d ) ; d)(a+ b) ( c + d) – ( a + d ) ( b + c )
e)( a + b ) ( c – d ) – ( a – b ) ( c + d ) ; f) ( a + b ) 2 – ( a – b ) 2
a) - ( - a + c – d ) – ( c – a + d )
= a - c - d - c + a + d
= (a + a) + (-c - c) + (-d + d)
= 2a - 2c
b) – ( a + b - c + d ) + ( a – b – c –d )
= - a - b + c - d + a - b - c - d
= (-a + a) + (-b - b) + (c - c) + (-d - d)
= -2b - 2d
a) - ( - a + c - d) - ( c - a + d )
= a - c + d - c + a - d
= 2a
b) - ( a+ b - c + d ) + ( a -b -c -d )
= - a-b+c-d+a-b-c-d
=-2d -2b
c) a(b-c-d) - a(b+c-d)
= a(b-c-d-b-c+d)
= ab-ac-ad-ab-ac+ad
= -2ab-2ac
d) (a+b)(c+d)-(a+d)(b+c)
= ac+ad+bc+bd - (ab+ac+bd+cd)
= ac+ad+bc+bd-ab-ac-bd-cd
=ad+bc-ab-cd
a) - ( - a + c - d) - ( c - a + d )
= a - c + d - c + a - d
= 2a
b) - ( a+ b - c + d ) + ( a -b -c -d )
= - a-b+c-d+a-b-c-d
=-2d -2b
c) a(b-c-d) - a(b+c-d)
= a(b-c-d-b-c+d)
= ab-ac-ad-ab-ac+ad
= -2ab-2ac
d) (a+b)(c+d)-(a+d)(b+c)
= ac+ad+bc+bd - (ab+ac+bd+cd)
= ac+ad+bc+bd-ab-ac-bd-cd
=ad+bc-ab-cd
e)(a+b)(c-d)-(a-b)(c+d)
= ac-ad+bc-bd-ac-ad+bc+bd
= 2bc-2ad
f) ( a + b )2 – ( a – b )2
= a2+2ab+b2 - (a2+2ab-b2)
=a2+2ab+b2 - a2-2ab+b2
=2b2
BÀI 1: Tìm x;y biết
1, (3x + 5) chia hết ( x+1 )
2, ( 8x-27 ) chia hết ( 2x+3)
3, ( x+7 ) . ( 2y-8) = 0
4, (3x-5) . (3-2y) =7
BÀI 2: Bỏ dấu ngoặc rồi rút gọn
1, a ( a-b+d) -a ( d-b-c)
2, -a(a-b+c-d) + ( -a-b-c+d)
3,-a( a+b ) ( c-d ) + ( a-b ) ( c+d )
4, ( a+b) ( c-d ) - ( a-b ) ( c+d)
5,( a+b) mũ 2 - ( a-b) mũ 2
bài 1:
a) ta có: 3x + 5 = (3(x+1)+2)\(⋮\)(x+1)
vì (3(x+1)\(⋮\)(x+1) nên 2 \(⋮\)(x+1) => (x+1) \(\in\)Ư(2) => (x+1) \(\in\)\(\xi\)-2;-1;1;2 \(\xi\)=> x \(\in\)\(\xi\)-3; -2; 0; 1 \(\xi\)
vậy, x= -3; -2; 0; 1
Bài 1. Rút gọn biểu thức:
b) A=(u-v)3+3uv(u+v)
c) C=6(c-d)(c+d)+2(c-d)2-(c-d)3
Bài 2. Tính nhanh:
a) 1013 b) 2993 c) 993
Bài 2.
a) 1013 = (100+1)3 = 1003+3.1002.1+3.100.12+13
= 1000000+30000+300+1 = 1030301
b) 2993 = (300-1)3 = 3003-3.3002.1+3.300.12-13
= 27000000 - 270000 + 900 -1 = 26730899
c) 993 = (100-1)3 = 1003-3.1002.1+3.100.12-1
= 1000000 - 30000 + 300 -1 = 970299
\(1,\\ b,A=\left(u-v\right)^3+3uv\left(u+v\right)\\ A=u^3-3u^2v+3uv^2-v^3+3u^2v+3uv^2=u^3-v^3\\ c,6\left(c-d\right)\left(c+d\right)+2\left(c-d\right)^2-\left(c-d\right)^3\\ =6c^2-6d^2+2c^2-4cd+2d^2-c^3+3c^2d-3cd^2+d^3\\ =8c^2-c^3-4d^2-4cd+3c^2d-3cd^2+d^3\)
\(2,\\ a,101^3=\left(100+1\right)^3\\ =100^3+3\cdot10000\cdot1+3\cdot100\cdot1+1\\ =1000000+30000+300+1=1030301\\ b,299^3=\left(300-1\right)^3\\ =300^3-3\cdot90000\cdot1+3\cdot300\cdot1-1\\ =27000000-270000+900-1\\ =26730899\\ c,99^3=\left(100-1\right)^3\\ =100^3-3\cdot10000\cdot1+3\cdot100\cdot1-1\\ =1000000-30000+300-1=970299\)
Bài 1:
a.
$A=u^3-3u^2v+3uv^2-v^3+3uv^2+3u^2v$
$=u^3+6uv^2-v^3$
c.
$C=(c-d)[6(c+d)+2(c-d)-(c-d)^2]$
$=(c-d)[8c+4d-(c^2-2cd+d^2)]=(c-d)(-c^2+2cd-d^2+8c+4d)$