cho hình thang ABCD. O là giao điểm hai đường chéo
biết SAOB=a2 SCOD=b2
Tính SABCD=?
cho hình thang ABCD .đáy AB=2/3CD. hai đường chéo AC và BD cắt nhau tại O. sAOB kém sCOD là 3,5 cm2. tính sABCD
Cho hình thang ABCD(AB//CD),hai đường chéo cắt nhau tại O
a,CMR SAOD=SBOC
b,Cho biết SAOB=9,SCOD=25 tính SABCD
1)cho hình thang ABCD(AB//CD),O là giao điểm 2 đường chéo
CMR: Saob+Scod>=1/2Sabcd
Ta có : \(\frac{S_{BOC}}{S_{COD}}=\frac{OB}{OD}\); \(\frac{S_{AOB}}{S_{AOD}}=\frac{OB}{OD}\)
\(\Rightarrow\frac{S_{BOC}}{S_{COD}}=\frac{S_{AOB}}{S_{AOD}}\Rightarrow S_{BOC}.S_{AOD}=S_{AOB}.S_{COD}\)
Lại có : \(S_{ABCD}=S_{AOB}+S_{COD}+\left(S_{BOC}+S_{AOD}\right)=S_{AOB}+S_{COD}+2\sqrt{S_{BOC}.S_{AOD}}=S_{AOB}+S_{COD}+2\sqrt{S_{AOB}.S_{COD}}=\left(\sqrt{S_{AOB}}+\sqrt{S_{COD}}\right)^2\)( Vì \(S_{BOC}=S_{AOD}\))
Mặt khác : \(S_{ABCD}=\left(\sqrt{S_{AOB}}+\sqrt{S_{COD}}\right)^2=\left(1.\sqrt{S_{AOB}}+1.\sqrt{S_{COD}}\right)^2\le2\left(S_{AOB}+S_{COD}\right)\Rightarrow S_{AOB}+S_{COD}\ge\frac{1}{2}.S_{ABCD}\)(ĐPCM)
cho hình thang ABCD 2 đường chéo cắt nhau tại O. cho S=Sabcd, S1=Saob, S2=Scod. CHỨNG MINH \(\sqrt{S}=\sqrt{S1}+\sqrt{S2}\)
Ta có : \(\frac{OA}{OC}=\frac{S_{AOB}}{S_{BOC}}\) và \(\frac{OA}{OC}=\frac{S_{AOD}}{S_{OCD}}\)
\(\Rightarrow\frac{S_{AOB}}{S_{BOC}}=\frac{S_{AOD}}{S_{OCD}}\)\(\Rightarrow S_{AOB}.S_{OCD}=S_{AOD}.S_{BOC}=S_1.S_2=S^2_1=S_2^2\)
Lại có : \(S=S_{AOB}+S_{BOC}+S_{COD}+S_{AOD}=S_1+S_2+2\sqrt{S_1.S_2}=\left(\sqrt{S_1}+\sqrt{S_2}\right)^2\)
\(\Rightarrow\sqrt{S}=\sqrt{S_1}+\sqrt{S_2}\) (đpcm)
Hình thang ABCD( AB//CD) có hai đường chéo cắt nhau tại O. Đường thẳng qua O và song song với đáy AB cắt các cạnh bên AD,BC theo thứ tự M và N
a. Chứng minh rằng OM=ON
bChứng minh rằng 1/AB+1/CD=2/MN
c Biết SAOB=2010*2; SCOD= 2011*2. TÍNH sabcd
Tam giác ABD có OE//AB =>DO/DB = OE/AB (Theo hệ quả Đlý Ta-lét) (1)
Tam giác ABC có OF//AB =>CO/CA = OF/AB (Theo hệ quả Đlý Ta-lét) (2)
Tam giác ABO có CD//AB =>OD/OB = OC/OA (Theo hệ quả Đlý Ta-lét)
=> OD/(OB+OD) = OC/(OA+OC) hay OD/DB=CO/CA (3)
Từ (1) (2) và (3) => OE/AB = OF/AB
=> OE = OF (điều phải chứng minh.)
Chúc bạn học giỏi nha.
Cho hình thang ABCD có AB//CD và 2 đường chéo AC, BD cắt nhau tại O chứng minh
a, SAOB + SCOD >=1/2SABCD
b, Điều kiện nào của hình thang ABCD thì SAOB +SCOD đạt GTNN
cho hình thang abcd biết 2 đường chéo cắt nhau tại o . biết Saob = 18 cm2 ,Saod =30 cm2 . tính Sabcd
cho hình thang ABCD có đáy nhỏ AB=1/3CD .Hai đường chéo AC và BD cắt nhau ở O biết SAOB=4CM vuông.tính SABCD
cho hình thang ABCD có đáy AB = 1/3 đáy CD . 2 đường chéo cắt nhau tại O biết SABCD=160 cm2. tính SAOB
cho hình thang ABCD (AB//CD) , AC giao BD =\(\left\{O\right\}\), C/M :
a)SAOD =SBDC
b) biết SAOB=9 ,SCOD=25
Tính SABCD