Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Văn Thành Đô
Xem chi tiết
Nguyễn Khánh Ly
22 tháng 11 2016 lúc 20:10

 với mọi x, y, z ta có: 
(x-y)^2 +(y-z)^2+ (z-x)^2>=0 
<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0 
<=>x^2 + y^2 +z^2 - xy -yz -zx >=0 
<=>(x+y+z)^2 >= 3(x+y+z) 
<=>[(x+y+z)^2]/3 >= xy+yz+ zx 
=>xy +yz + zx <=3 
dấu = xảy ra khi x=y=z =1 

=> Max P=3

Bùi Thị Hải Yến
20 tháng 12 2016 lúc 20:27

x=1:z=1:y=1.tích cho tui nhé!hi!hi!hi!!!!!!!!!!!!!!!

Phạm Thị Mai Anh
29 tháng 7 2020 lúc 16:49

Mot tam bia hinh chu nhat co chieu rong bang 1/2 chieu dai.Tinh dien h tam bia do , biet rang neu tang ca chieu dai va chieu rong cua no len 3 dm thi dien h tam bia tang them 49,5dm2
Gọi CR là a thì CD là (2 x a ) (dm)
Khi tăng cả chiều dài và chiều rộng lên 3dm thì:
chiều dài : (2xa ) + 3 (dm)
chiều rộng : a +3 (dm)
Vì diện tích tăng thêm 49.5 dm2 nên :
{ [(2xa) + 3 ]x (a +3 ) } - [(2xa) xa] = 49,5
<=>( 2 x a x a )+ 9xa + 6 - (2 x a x a) = 49,5
<-> 9xa +6 = 49,5
<-> 9 x a = 49,5 - 6 = 43.5
<=> a = 43.5 : 9 = 4.8 (dm)
CD = 4,8 x 2 = 9.6
=> S tấm bìa = 4.8 x 9.6 = 46,08 ( dm2)

Khách vãng lai đã xóa
Lê Thùy Dung
Xem chi tiết
Trà My
23 tháng 4 2017 lúc 17:55

Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)

<=>\(x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge3\left(xy+yz+zx\right)\)<=>\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

<=>\(3^2\ge3\left(xy+yz+zx\right)\)<=>\(P=xy+yz+zx\le3\)=>Pmax=3 <=> x=y=z=1

Hoàng Nguyễn Huy
25 tháng 5 2018 lúc 10:46

Ta có BĐT đúng sau:

x2 + y2 + z2 >= xy + yz + zx

<=> (x + y + z)2 >= 3(xy + yz + zx)

<=> 9 >= 3 P <=> P <=3 (dấu bằng khi x = y = z =1)

kiyomehaku
30 tháng 7 2020 lúc 8:34

chả biết

Khách vãng lai đã xóa
Nguyễn Anh Tuấn
Xem chi tiết
Big City Boy
Xem chi tiết
Lấp La Lấp Lánh
28 tháng 9 2021 lúc 20:32

Tham khảo:

Cho 3 số thức x,y,z thỏa mãn \(x\ge1;y\ge4;z\ge9\) tìm giá trị lớn nhất của biết thức Q=\(\dfrac{yz\sqrt{x-1}+zx\sqrt... - Hoc24

Vô Danh
Xem chi tiết
Tran Le Khanh Linh
28 tháng 4 2020 lúc 6:02

\(A=\sqrt{xy}\sqrt{xz}+\sqrt{yz}\sqrt{xy}+\sqrt{xz}\sqrt{yz}\)

\(A\le\frac{xy+xz+yz+xy+xz+yz}{2}=xy+yz+zx\)

\(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\)

=> \(A\le\frac{1}{3}\)

Dấu "=" xảy ra <=> \(x=y=\frac{1}{3}\)

Khách vãng lai đã xóa
thánh yasuo lmht
Xem chi tiết
Thắng Nguyễn
11 tháng 2 2017 lúc 21:45

Câu hỏi của phan tuấn anh - Toán lớp 9 - Học toán với OnlineMath cái này y hệt, tham khảo đi nếu vẫn chưa làm dc thì nhắn cho mk

Nguyễn Vũ Trường Giang
Xem chi tiết
Trịnh Quỳnh Nhi
22 tháng 12 2017 lúc 12:41

Với mọi x,y,z ta luôn có

(x-y)2+(y-z)2+(z-x)2\(\ge\)0

<=> 2x2+2y2+2z2-2xy-2yz-2zx\(\ge\)0

<=> x2+y2+z2-xy-yz-zx\(\ge\)0

<=> (x2+y2+z2+2xy+2yz+2zx)-3xy-3yz-3zx \(\ge\)0

<=> (x+y+z)2\(\ge\)3(xy+yz+zx)

<=> 9\(\ge\)3(xy+yz+zx)

<=> 3\(\ge\)xy+yz+zx = B

Dấu "=" xảy ra khi x=y=z=1

Vậy max B=3 <=> x=y=z=1

Phạm Thị Thùy Linh
26 tháng 2 2019 lúc 22:07

đây mới là chuẩn nè

Hoàng Bảo Trân
Xem chi tiết
Đặng Thị Thu Hiền
Xem chi tiết
Trần Thị Loan
28 tháng 12 2014 lúc 9:38

Áp dụng BĐT Cô - si cho 2 số \(\frac{xy}{z};\frac{yz}{x}\)dương ta có: \(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2\sqrt{y^2}=2y\)(1)

Tương tự. \(\frac{yz}{x}+\frac{zx}{y}\ge2\sqrt{\frac{yz}{x}.\frac{zx}{y}}=2\sqrt{z^2}=2z\) (2);

\(\frac{xy}{z}+\frac{zx}{y}\ge2\sqrt{\frac{xy}{z}.\frac{zx}{y}}=2\sqrt{x^2}=2x\)(3)

Cộng từng vế của (1)(2)(3) ta được \(2.\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)\ge2\left(x+y+z\right)=2\Rightarrow P\ge1\)

Vậy Min P = 1 tại x= y = z = 1/3

Nguyễn Khánh Ly
Xem chi tiết
Tử Mộc
1 tháng 5 2017 lúc 18:13

Cauchy-Schwarz : \(\left(x^2+y^2+z^2\right)\left(y^2+z^2+x^2\right)\ge\left(xy+yz+zx\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2\ge\left|xy+yz+zx\right|\ge xy+yz+zx\)(1)

Mặt khác :

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2+y^2+z^2=9-2\left(xy+yz+zx\right)\)

Kết hợp (1) 

=> \(9-2\left(xy+yz+xz\right)\ge xy+yz+zx\)

\(\Leftrightarrow3\left(xy+yz+zx\right)\le9\)

\(\Leftrightarrow xy+yz+zx\le3\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\\x+y+z=3\end{cases}}\)<=> x=y=z=1

Vậy MaxM=3 khi x=y=z=1