Cho 3 số x,y,z thỏa mãn x+y+z = 3
Giá trị lớn nhất của biểu thức P =xy+yz+zx là ...?
Cho x;y;z thỏa mãn x + y + z = 3. Giá trị lớn nhất của biểu thức P = xy + yz + zx là ...
với mọi x, y, z ta có:
(x-y)^2 +(y-z)^2+ (z-x)^2>=0
<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0
<=>x^2 + y^2 +z^2 - xy -yz -zx >=0
<=>(x+y+z)^2 >= 3(x+y+z)
<=>[(x+y+z)^2]/3 >= xy+yz+ zx
=>xy +yz + zx <=3
dấu = xảy ra khi x=y=z =1
=> Max P=3
x=1:z=1:y=1.tích cho tui nhé!hi!hi!hi!!!!!!!!!!!!!!!
Mot tam bia hinh chu nhat co chieu rong bang 1/2 chieu dai.Tinh dien h tam bia do , biet rang neu tang ca chieu dai va chieu rong cua no len 3 dm thi dien h tam bia tang them 49,5dm2
Gọi CR là a thì CD là (2 x a ) (dm)
Khi tăng cả chiều dài và chiều rộng lên 3dm thì:
chiều dài : (2xa ) + 3 (dm)
chiều rộng : a +3 (dm)
Vì diện tích tăng thêm 49.5 dm2 nên :
{ [(2xa) + 3 ]x (a +3 ) } - [(2xa) xa] = 49,5
<=>( 2 x a x a )+ 9xa + 6 - (2 x a x a) = 49,5
<-> 9xa +6 = 49,5
<-> 9 x a = 49,5 - 6 = 43.5
<=> a = 43.5 : 9 = 4.8 (dm)
CD = 4,8 x 2 = 9.6
=> S tấm bìa = 4.8 x 9.6 = 46,08 ( dm2)
Cho các số x,y,z thỏa mãn x+y+z = 3
Tìm giá trị lớn nhất của biểu thức P = xy + yz + zx
Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)
<=>\(x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge3\left(xy+yz+zx\right)\)<=>\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
<=>\(3^2\ge3\left(xy+yz+zx\right)\)<=>\(P=xy+yz+zx\le3\)=>Pmax=3 <=> x=y=z=1
Ta có BĐT đúng sau:
x2 + y2 + z2 >= xy + yz + zx
<=> (x + y + z)2 >= 3(xy + yz + zx)
<=> 9 >= 3 P <=> P <=3 (dấu bằng khi x = y = z =1)
1. Cho x,y,z là ba số dương thay đổi và thỏa mãn \(^{x^2+y^2+z^2\le xyz}\)
Hãy tìm giá trị lớn nhất của biểu thức \(A=\frac{x}{x^2+yz}+\frac{y}{y^2+zx}+\frac{z}{z^2+xy}\)
2. Cho x,y,z là các số thực không âm thỏa mãn \(x^2+y^2+z^2=3\)
Tìm giá trị lớn nhất của biểu thức \(B=xy+yz+zx+\frac{5}{x+y+z}\)
Cho 3 số thực: x; y; z thỏa mãn: \(x\ge1;y\ge4;z\ge9\). Tìm giá trị lớn nhất của biểu thức: \(M=\dfrac{yz.\sqrt{x-1}+zx.\sqrt{y-4}+xy.\sqrt{z-9}}{xyz}\)
Tham khảo:
Cho 3 số thức x,y,z thỏa mãn \(x\ge1;y\ge4;z\ge9\) tìm giá trị lớn nhất của biết thức Q=\(\dfrac{yz\sqrt{x-1}+zx\sqrt... - Hoc24
Cho x, y, z là các số dương thỏa mãn x + y + z = 1. Tính giá trị lớn nhất của biểu thức \(A=x\sqrt{yz}+y\sqrt{zx}+z\sqrt{xy}\)
\(A=\sqrt{xy}\sqrt{xz}+\sqrt{yz}\sqrt{xy}+\sqrt{xz}\sqrt{yz}\)
\(A\le\frac{xy+xz+yz+xy+xz+yz}{2}=xy+yz+zx\)
\(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\)
=> \(A\le\frac{1}{3}\)
Dấu "=" xảy ra <=> \(x=y=\frac{1}{3}\)
Với 3 số dương x, y, z thỏa mãn x+y+z=1. Tìm giá trị lớn nhất của biểu thức:
\(Q=\frac{x}{x+\sqrt{x+yz}}+\frac{y}{y+\sqrt{y+zx}}+\frac{z}{z+\sqrt{z+xy}}\)
Câu hỏi của phan tuấn anh - Toán lớp 9 - Học toán với OnlineMath cái này y hệt, tham khảo đi nếu vẫn chưa làm dc thì nhắn cho mk
Cho 3 số x,y,z thỏa mãn x+y+z=3
Tính giá trị lớn nhất của B=xy+yz+zx
Với mọi x,y,z ta luôn có
(x-y)2+(y-z)2+(z-x)2\(\ge\)0
<=> 2x2+2y2+2z2-2xy-2yz-2zx\(\ge\)0
<=> x2+y2+z2-xy-yz-zx\(\ge\)0
<=> (x2+y2+z2+2xy+2yz+2zx)-3xy-3yz-3zx \(\ge\)0
<=> (x+y+z)2\(\ge\)3(xy+yz+zx)
<=> 9\(\ge\)3(xy+yz+zx)
<=> 3\(\ge\)xy+yz+zx = B
Dấu "=" xảy ra khi x=y=z=1
Vậy max B=3 <=> x=y=z=1
Cho x,y,z là các số dương thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\) Tìm giá trị lớn nhất của biểu thức : P = \(\frac{xy}{x^3+y^3}+\frac{yz}{y^3+z^3}+\frac{zx}{z^3+x^3}\)
Cho ba số dương x,y,z thỏa mãn x+y+z=1. Tìm giá trị nhỏ nhất của biểu thức P=(xy/z)+(yz/x)+(zx/y)
Áp dụng BĐT Cô - si cho 2 số \(\frac{xy}{z};\frac{yz}{x}\)dương ta có: \(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2\sqrt{y^2}=2y\)(1)
Tương tự. \(\frac{yz}{x}+\frac{zx}{y}\ge2\sqrt{\frac{yz}{x}.\frac{zx}{y}}=2\sqrt{z^2}=2z\) (2);
\(\frac{xy}{z}+\frac{zx}{y}\ge2\sqrt{\frac{xy}{z}.\frac{zx}{y}}=2\sqrt{x^2}=2x\)(3)
Cộng từng vế của (1)(2)(3) ta được \(2.\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)\ge2\left(x+y+z\right)=2\Rightarrow P\ge1\)
Vậy Min P = 1 tại x= y = z = 1/3
Tìm giá trị lớn nhất của M=xy+yz+zx
Với x,y,z là số thực thỏa mãn : x+y+z=3
Cauchy-Schwarz : \(\left(x^2+y^2+z^2\right)\left(y^2+z^2+x^2\right)\ge\left(xy+yz+zx\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2\ge\left|xy+yz+zx\right|\ge xy+yz+zx\)(1)
Mặt khác :
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2=9-2\left(xy+yz+zx\right)\)
Kết hợp (1)
=> \(9-2\left(xy+yz+xz\right)\ge xy+yz+zx\)
\(\Leftrightarrow3\left(xy+yz+zx\right)\le9\)
\(\Leftrightarrow xy+yz+zx\le3\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\\x+y+z=3\end{cases}}\)<=> x=y=z=1
Vậy MaxM=3 khi x=y=z=1