Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi ha mai
Xem chi tiết
Ngô Tấn Đạt
26 tháng 12 2017 lúc 21:35

\(\dfrac{2018}{6}+\dfrac{2018}{12}+...+\dfrac{2018}{2017.2018}\\ =2018\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2017.2018}\right)\\ =2018\left(\dfrac{1}{2}-\dfrac{1}{2018}\right)\\ =1009\)

Nguyen Ngoc Anh Linh
26 tháng 12 2017 lúc 19:36

Đặt \(A=\dfrac{2018}{6}+\dfrac{2018}{12}+\dfrac{2018}{20}+..+\dfrac{2018}{2017.2018}\)

\(A=2018\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{2017.2018}\right)\)

\(A=2018\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2017.2018}\right)\)

\(A=2018\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\right)\)

\(A=2018\left(\dfrac{1}{2}-\dfrac{1}{2018}\right)\)

\(A=2018\left(\dfrac{1006}{2018}-\dfrac{1}{2018}\right)=2018.\dfrac{1005}{2018}=1005\)

Nguyễn Hải Dương
Xem chi tiết
Big City Boy
Xem chi tiết
Trọng Vũ
Xem chi tiết
Lê Gia Bảo
6 tháng 8 2017 lúc 9:18

Ta có : \(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)

Rõ ràng ta thấy : \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\) (1)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\) (2)

Từ (1)(2), suy ra :

\(\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)

Vậy ......................

~ Học tốt ~

Lê Gia Bảo
6 tháng 8 2017 lúc 9:15

Ta có : \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)

\(=3+\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)

Vậy \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)

Gay\
Xem chi tiết
Trần Minh Hoàng
17 tháng 1 2021 lúc 10:50

\(A=1.2.3...2018\left[\left(1+\dfrac{1}{2018}\right)+\left(\dfrac{1}{2}+\dfrac{1}{2017}\right)+...+\left(\dfrac{1}{1009}+\dfrac{1}{1010}\right)\right]\)

\(A=1.2.3...2018.2019\left(\dfrac{1}{1.2018}+\dfrac{1}{2.2017}+...+\dfrac{1}{1009.1010}\right)\)

\(\dfrac{A}{2019}=1.2.3...2018\left(\dfrac{1}{1.2018}+\dfrac{1}{2.2017}+...+\dfrac{1}{1009.1010}\right)\).

Rõ ràng tích 1 . 2 ... 2018 chia hết cho các tích 1 . 2018; 2 . 2017; ...; 1009 . 1010; do đó \(\dfrac{A}{2019}\) là số tự nhiên.

Vậy A chia hết cho 2019.

Kim So Huyn
Xem chi tiết
Hiiiii~
19 tháng 5 2018 lúc 17:12

Giải:

Ta có:

\(P=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)

\(Q=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)

\(\left\{{}\begin{matrix}\dfrac{2016}{2017}=\dfrac{2016}{2017}\\\dfrac{2017}{2018}=\dfrac{2017}{2018}\\\dfrac{2018}{2019}=\dfrac{2018}{2019}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)

Hay \(P=Q\)

Vậy ...

Khánh Linh
Xem chi tiết
Nguyễn Thanh Hằng
8 tháng 8 2017 lúc 11:49

Ta có :

\(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)

Ta thấy :

\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\left(1\right)\)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\left(2\right)\)

từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)

Nguyễn Như Quỳnh
Xem chi tiết
Nguyen Thi Huyen
8 tháng 9 2018 lúc 11:42

Ta có: \(B=\dfrac{2017+2018+2019}{2018+2019+2020}=\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2019+2020}\)

\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019+2020}\)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019+2020}\)

\(\dfrac{2019}{2020}>\dfrac{2019}{2018+2019+2020}\)

\(\Rightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}>\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2919+2020}\)

\(\Rightarrow A>B.\)

Vậy \(A>B.\)

Lou
Xem chi tiết
Nguyễn Đình Dũng
30 tháng 8 2017 lúc 20:24

Ta có: \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\)

=> \(\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)

=> A > B

Nguyễn Thanh Hằng
30 tháng 8 2017 lúc 20:24

Ta có :

\(B=\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)

Ta thấy :

\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\left(1\right)\)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A>B\)

Tran Thi Thanh Tam
4 tháng 6 2018 lúc 22:32

Ta có:

\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\) (1)

\(\dfrac{2018}{2019}>\dfrac{2018}{2016+2019}\) (2)

Từ (1) và (2)⇒ A> B