Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
:vvv
Xem chi tiết
Lấp La Lấp Lánh
10 tháng 10 2021 lúc 11:19

Ta có: \(x+y=z\Rightarrow x=z-y\)

\(A=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{x^2y^2+y^2z^2+x^2z^2}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{\left(z-y\right)^2y^2+y^2z^2+\left(z-y\right)^2z^2}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{y^4+y^2z^2-2y^3z+y^2z^2+z^4+y^2z^2-2yz^3}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{\left(y^4+2y^2z^2+z^4\right)-2yz\left(y^2+z^2\right)+y^2z^2}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{\left(y^2+z^2\right)^2-2yz\left(y^2+z^2\right)+y^2z^2}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{\left(y^2+z^2-yz\right)^2}{x^2y^2z^2}}=\left|\dfrac{y^2+z^2-yz}{xyz}\right|\)

Là một số hữu tỉ do x,y,z là số hữu tỉ

ミ★ɦυүềη☆bùї★彡
Xem chi tiết
Comebacktome
23 tháng 10 2018 lúc 19:26

\(\sqrt{2\sqrt{3}-3}=\sqrt{3x\sqrt{3}}-\sqrt{y\sqrt{3}}\)

\(\Leftrightarrow\sqrt{2-\sqrt{3}}=\sqrt{3x}-\sqrt{y}\Leftrightarrow2-\sqrt{3}=3x+y-2\sqrt{3xy}\)

\(\Leftrightarrow3x+y-2=2\sqrt{3xy}-\sqrt{3}\)(1)

Để phương trình đầu có nghiệm hữu tỉ=> phương trình (1) có nghiệm hữu tỉ x,y

\(\Rightarrow\hept{\begin{cases}2\sqrt{3xy}-\sqrt{3}=0\\3x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2\sqrt{xy}-1=0\\3x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=\frac{1}{4}\\y=2+3x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(2-3x\right)=\frac{1}{4}\\y=2-3x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}12x^2-8x+1=0\\y=2-3x\end{cases}}\)

phân tích thành nhân tử r làm tiếp nhé

Lê Hiển Vinh
Xem chi tiết
Nguyen Thi Mai
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 10 2021 lúc 10:38

a. Đề bài em ghi sai thì phải

Vì:

\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)

\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)

\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)

Nguyễn Việt Lâm
25 tháng 10 2021 lúc 10:43

b.

Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)

Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R

Hàm bậc 3 nên có tối đa 3 nghiệm

\(f\left(-2\right)=-8+4a-2b+c>0\)

\(f\left(2\right)=8+4a+2b+c< 0\)

\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)

\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)

\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)

Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn  có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)

\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb

_little rays of sunshine...
Xem chi tiết
Nguyễn thành Đạt
15 tháng 9 2023 lúc 13:04

a) Từ giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)

\(\Rightarrow2ab\text{=}2bc+2ca\)

\(\Rightarrow2ab-2bc-2ca\text{=}0\)

Ta xét : \(\left(a+b-c\right)^2\text{=}a^2+b^2+c^2+2ab-2bc-2ca\)

\(\text{=}a^2+b^2+c^2\)

Do đó : \(A\text{=}\sqrt{a^2+b^2+c^2}\text{=}\sqrt{\left(a+b-c\right)^2}\)

\(\Rightarrow A\text{=}a+b-c\)

Vì a;b;c là các số hữu tỉ suy ra : đpcm

b) Đặt : \(a\text{=}\dfrac{1}{x-y};b\text{=}\dfrac{1}{y-x};c\text{=}\dfrac{1}{z-x}\)

Do đó : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)

Ta có : \(B\text{=}\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)

Từ đây ta thấy giống phần a nên :

\(B\text{=}a+b-c\)

\(B\text{=}\dfrac{1}{x-y}+\dfrac{1}{y-z}-\dfrac{1}{z-x}\)

Suy ra : đpcm.

Mình bổ sung đề phần b cần phải có điều kiện của x;y;z nha bạn.

Lê Minh Đức
Xem chi tiết
Linh Nguyen Huyen
Xem chi tiết
vũ tiền châu
17 tháng 7 2018 lúc 12:35

Ta có \(\left(\sqrt{x^2+1}-x\right)\left(\sqrt{x^2+1}+x\right)=1\Rightarrow\sqrt{x^2+1}-x=\sqrt{y^2+1}+y\)

Tương tự, ta có \(\sqrt{y^2+1}-y=\sqrt{x^2+1}+x\)

Cộng 2 vế, ta có x+y=0

^_^

missing you =
Xem chi tiết
nguyễn bích thuỳ
Xem chi tiết