Tim GTNN cua bieu thuc A=|x-7|+6-x
Tim GTNN cua bieu thuc
A=6/ /x/ - 3 ( x thuoc Z)
Tim GTNN cua bieu thuc:
B=|x-2|+|x-6|+5
B = |x - 2| + |x - 6| + 5
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
B = |x - 2| + |x - 6| + 5 = |x - 2| + |6 - x| + 5
B ≥ |x - 2 + 6 - x| + 5 = 4 + 5 = 9
Dấu "=" xảy ra <=> (x - 2)(x - 6) ≥ 0
<=> 2 ≤ x ≤ 6
Vậy gtnn của B là 9 tại 2 ≤ x ≤ 6
B = |x-2|+|x-6|+5
giá trị nhỏ nhất của B là 9 nha bạn
K mk nha
Tim GTNN cua bieu thuc A=|x-2|+|x-10|
Ta có: \(A=\left|x-2\right|+\left|x-10\right|=\left|x-2\right|+\left|10-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A\ge\left|x-2+10-x\right|=\left|-8\right|=8\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-2\ge0\\10-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le10\end{matrix}\right.\Rightarrow2\le x\le10\)
Vậy \(MIN_A=8\) khi \(2\le x\le10\)
tim GTNN cua bieu thuc A=x-2017|x - 2017| + |x - 2018| + |x - 2019|
Cho x,y,z la cac so thuc duong thoa man x + y + z = 6
Tim GTNN cua bieu thuc P = ( x + y )/(xyz)
\(P=\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\)
Áp dụng Bunyakovsky dạng phân thức : \(\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\)(1)
Ta có : \(\sqrt{z\left(x+y\right)}\le\frac{x+y+z}{2}\)( theo AM-GM )
=> \(z\left(x+y\right)\le\left(\frac{x+y+z}{2}\right)^2=\left(\frac{6}{2}\right)^2=9\)
=> \(\frac{1}{z\left(x+y\right)}\ge\frac{1}{9}\)=> \(\frac{4}{z\left(x+y\right)}\ge\frac{4}{9}\)(2)
Từ (1) và (2) => \(P=\frac{x+y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\ge\frac{4}{9}\)
=> P ≥ 4/9
Vậy MinP = 4/9, đạt được khi x = y = 3/2 ; z = 3
tim GTNN cua bieu thuc :
\(x^2-4\sqrt{x}-7\)
x - 4√x - 7 ( ĐKXĐ : x ≥ 0 ) ( x2 không tính được nha :)) )
= [ ( √x )2 - 2.2.√x + 4 ] - 11
= ( √x - 2 )2 - 11
( √x - 2 )2 ≥ 0 ∀ x ≥ 0 => ( √x - 2 )2 - 11 ≥ -11 ∀ x ≥ 0
Đẳng thức xảy ra <=> √x - 2 = 0
<=> √x = 2
<=> x = 4 ( bình phương hai vế và tmđk )
=> GTNN của biểu thức = -11 <=> x = 4
Cho bieu thuc A = x-2√xy+3y-2√x+1.Tim GTNN cua A
\(A=x-2\sqrt{x}\left(\sqrt{y}+1\right)+\left(\sqrt{y}+1\right)^2+\left(3y+1-\left(\sqrt{y}+1\right)^2\right)\)
\(=\left(\sqrt{x}-\sqrt{y}-1\right)^2+2\left(y-\sqrt{y}+\frac{1}{4}\right)-\frac{1}{2}\)
\(=\left(\sqrt{x}-\sqrt{y}-1\right)^2+2\left(\sqrt{y}-\frac{1}{2}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)
Amin= -1/2 khi y=1/4; x=9/4
tim gtnn cua bieu thuc:
A=|x|+|8-x|
A = |x| + |8- x| \(\ge\)|x+8-x| = |8| = 8
Vậy A min = 8
Ta có : \(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)
Dấu "=" xảy ra <=> \(x\left(8-x\right)\ge0\Leftrightarrow0\le x\le8\)
Vậy GTNN của A là 8 tại \(0\le x\le8\)
tim gia tri cua x de bieu thuc co GTNN
a) 3x^2 - 6x - 1
b) ( x - 1)( x + 2 )( x + 3 )( x + 6 )
a) 3 x^2 - 6x - 1
= 3 ( x^2 - 2x - 1/3 )
= 3 ( x^2 - 2x + 1 - 4/3)
= 3 [ ( x- 1 )^2 - 4/3)
=3 ( x- 1 )^2 - 4
Vì 3 ( x- 1 )^2 >=0 => 3 ( x- 1 )^2 - 4 >= 4
VẬy GTNN là 4 khi x- 1 = 0 => x = 1
b ) ( x- 1 )( x +2 )( x+ 3 )( x+6 )
= ( x - 1 )( x+ 6 )( x+ 2 )( x+ 3 )
= ( x^2 + 5x - 6 ) . ( x^2 + 5x + 6 )
Đặt x^2 + 5x = t ta có :
= ( t- 6 )( t+ 6 )
= t^2 - 36
Vì t^2 >=0 => t^2 -36 >= -36
VẬy GTNN là -36 khi x ^2 + 5x = 0 => x = 0 hoặc x = 5
Nhớ ****