Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
baekhyun
Xem chi tiết
Nguyễn Minh Quang
25 tháng 1 2021 lúc 16:04

ta có 

tử số \(\frac{1}{19}+\frac{2}{18}+..+\frac{18}{2}+\frac{18}{1}=\frac{1}{19}+1+\frac{2}{18}+1+..+\frac{18}{2}+1\)

\(\frac{20}{19}+\frac{20}{18}+..+\frac{20}{2}=20\left(\frac{1}{19}+\frac{1}{18}+..+\frac{1}{2}\right)\)

Do đó ta có phân số trên bằng 20

Khách vãng lai đã xóa
Hải Yến
Xem chi tiết
Trần Đoàn Nam Phương
Xem chi tiết
Phùng Quang Thịnh
21 tháng 4 2017 lúc 6:21

* Cách làm : Tử giữ nguyên,còn mẫu ta biến đổi như sau:
Mẫu : ( \(\frac{19}{1}\)+ 1 ) + ( \(\frac{18}{2}\)+ 1 ) + ( \(\frac{17}{3}\)+ 1 ) +...+ ( \(\frac{3}{17}\)+ 1 ) + ( \(\frac{2}{18}\)+ 1 ) + ( \(\frac{1}{19}\)+ 1 ) - 19  ( vì ta cộng với 19 số 1 nên phải trừ 19 )
\(\frac{20}{1}\)+  \(\frac{20}{2}\)+  \(\frac{20}{3}\)+...+  \(\frac{20}{17}\)+  \(\frac{20}{18}\)+  \(\frac{20}{19}\)- 19
=  \(\frac{20}{2}\)+  \(\frac{20}{3}\)+...+  \(\frac{20}{17}\)+   \(\frac{20}{18}\)+  \(\frac{20}{19}\)+ ( \(\frac{20}{1}\)- 19)
=  \(\frac{20}{2}\)+  \(\frac{20}{3}\)+ ...+   \(\frac{20}{17}\)+  \(\frac{20}{18}\)+  \(\frac{20}{19}\)+  \(\frac{20}{20}\)
= 20.( \(\frac{1}{2}\)+  \(\frac{1}{3}\)+...+  \(\frac{1}{17}\)+  \(\frac{1}{18}\)+  \(\frac{1}{19}\)+  \(\frac{1}{20}\))
=> \(\frac{Tử}{Mâu}\)=  \(\frac{1}{20}\)

Lê Tài Bảo Châu
12 tháng 5 2019 lúc 21:39

Phùng Quang Thịnh biến đổi sai 1 chỗ kìa 

-19 = \(\frac{20}{20}-20\)chứ mà bạn

Nguyễn Văn Công Hà
12 tháng 5 2019 lúc 21:46

thank Lê Tài Bảo Châu nhá

Phùng Thị Lan Anh
Xem chi tiết
Ẩn Danh
Xem chi tiết
NOO PHƯỚC THỊNH
Xem chi tiết
Phan thanh hùng
25 tháng 1 2021 lúc 21:23

9999999999999

Khách vãng lai đã xóa
Nguyễn Hữu Cường
Xem chi tiết
 .
Xem chi tiết
Lê Tài Bảo Châu
24 tháng 8 2019 lúc 22:41

Ta có phần tử \(=\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{18}{2}+\frac{19}{1}\)

\(=\left(\frac{1}{19}+1\right)+\left(\frac{2}{18}+1\right)+...+\left(\frac{18}{2}+1\right)+\left(\frac{19}{1}+1\right)-19\)

\(=\frac{20}{19}+\frac{20}{18}+...+\frac{20}{2}+\frac{20}{1}+\frac{20}{20}-20\)

\(=20.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{19}+\frac{1}{20}\right)\left(1\right)\)

Thay (1) vào P ta được :

\(P=\frac{20.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}}\)

    \(=20\)

phạm quỳnh anh
Xem chi tiết
ღღ_๖ۣ nhók_lùn ❣_ღღ
6 tháng 10 2017 lúc 20:02

a)     \(1\frac{3}{19}+\frac{8}{21}-\frac{3}{19}+0.5+\frac{13}{21}\)

\(=\left(1\frac{3}{19}-\frac{3}{19}\right)+\left(\frac{8}{21}+\frac{13}{21}\right)+0.5\)

\(=1+1+0.5=2.5\)

b)  \(\left(-\frac{3}{4}+\frac{2}{7}\right):\frac{3}{7}+\left(\frac{5}{7}+\frac{-1}{4}\right):\frac{3}{7}\)

\(=\left(\frac{-3}{4}+\frac{2}{7}+\frac{5}{7}+\frac{-1}{4}\right):\frac{3}{7}\)

\(=0:\frac{3}{7}=0\)