Chứng minh rằng: nếu số abcd chia hết cho 99 thì ab + cd chia het cho 99 và ngược lại
Mình mới vào nên chưa biết nhiều .Giúp mình nha , thanks
Bài 1 : Chứng tỏ rằng : nếu số abcd chia hết 99 thì ab + cd chia hết cho 99 và ngược lại
Bài 2 : Chứng tỏ rằng : nếu số abcd chia hết cho 101 thì ab - cd chia hết cho 101 và ngược lại
Chứng tỏ rằng : Nếu số abcd chia hết cho 99 thì ab +cd chia hết cho 99 và ngược lại.
Ta có: abcd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>99.ab+ab+cd chia hết cho 99
Vì 99.ab chia hết cho 99
=>ab+cd chia hết cho 99
=>ĐPCM
Ngược lại:
Ta có: ab+cd chia hết cho 99
=>99.ab+ab+cd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>abcd chia hết cho 99
=>ĐPCM
chứng tỏ rằng nếu số abcd chia hết cho 99 thì ab + cd chia hết cho 99 và ngược lại
ngu như cứt í chịch nhau ko?
chứng tỏ rằng nếu số abcd chia hết cho 99 thì ab+cd chia hết cho 99 và ngược lại.
Ta có: abcd chia hết cho 99
\(\Rightarrow\)ab . 100 + cd chia hết cho 99
\(\Rightarrow\)99 . ab + ab + cd chia hết cho 99
Vì 99 . ab chia hết cho 99 \(\Rightarrow\)ab + cd chia hết cho 99 ( ĐPCM )
Ngược lại:
Ta có: ab + cd chia hết cho 99
\(\Rightarrow\)99 . ab + ab + cd chia hết cho 99
\(\Rightarrow\)ab . 100 + cd chia hết cho 99
\(\Rightarrow\)abcd chia hết cho 99 ( ĐPCM )
Bài này tương tự bài lúc nãy
Chỉ thay đổi cách diễn đạt thôi
Ủng hộ nha
Chứng minh rằng :
Nếu abcd chia hết cho 99 thì ab + cd chia hết cho 99 và ngược lại
Ta có:abcd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>99.ab+ab+cd chia hết cho 99
Vì 99.ab chia hết cho 99
=>ab+cd chia hết cho 99
=>điều phải chứng minh(ĐPCM)
Ngược lại,ta có:
ab+cd chia hết cho 99
=>99.ab+ab+cd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>abcd chia hết cho 00
=>điều phải chứng minh(ĐPCM)
Nhớ tick cho mk nha!
\(\overline{abcd}=100\overline{ab}+\overline{cd}=99\overline{ab}+\overline{ab}+\overline{cd}\)
Vì \(\overline{abcd}\) và \(99\overline{ab}\) đều \(⋮\) 99 nên \(\overline{ab}\) + \(\overline{cd}\) cũng phải \(⋮\) 99
\(\Rightarrow\) ĐPCM
chứng minh rằng nếu abcd chia hết cho 99 thì ab + cd chia hết cho 99 và ngược lại
Khai bút đầu xuân:
abcd = 100.ab + cd = 99.ab + ab + cd chia hết cho 99 mà 99.ab chia hết cho 99 nên ab + cd chia hết cho 99
bài 1: chứng minh rầng: abcd chia hết cho 999 thì ab+cd chia hết cho 99 và ngược lại
bài 2 : cho abc - deg chia hết cho 7 chứng minh rằng abcdeg chia hết cho 7
Chứng tỏ rằng abcd chia hết 999. thì ab +cd chia hết cho 99 và ngược lại
Chứng tỏ rằng nếu abcd chia hết cho 99 thì ab +cd chia hết cho 99 và ngược lại
abcd chia hết cho 99. Suy ra abcd chia hết cho 11 và 9.
Để abcd chia hết cho 11. Suy ra (a+c)-(b+d)=11;0hay (b+d)-(a+c)=11;0.(1)
Để abcd chia hết cho 9. Suy ra a+b+c+d chia hết cho 9.(2)
Từ (2) suy ra ab+cd chia hết cho 9 (vì a+b+c+d chia hết cho 9)
Từ (1) suy ra ab+cd chia hết cho 11 vì ab=10xa+b; cd=10xc+d suy ra ab+cd=10xa+b+10xc+d=10x(a+c)+(b+d)
Nếu (a+c)-(b+d)=0 hay (b+d)-(a+c)=0
Suy ra b+d=a+c suy ra ab+cd=11(a+c)=11(b+d)
Nếu (a+c)-(b+d)=11 hay (b+d)-(a+c)=11
Suy ra ab+cd=10x(a+c)+(a+c)+11 chia hết cho 11 ab+cd=10x(11+b+d)+(b+d)=11x10+11x(b+d) chia hết cho 11
Vậy abcd chia hết cho 99 Suy ra ab+cd chia hết cho 99(và ngược lại)