Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Giang
Xem chi tiết
Ice Wings
29 tháng 11 2015 lúc 10:37

a) Gọi 2 số tự nhiên là a,a+1 và (a;a+1)=d

Ta có: a chia hết cho d

a+1 chia hết cho d

=> (a+1)-a =1 chia hết cho d

=> d thuộc Ư(1)={1}

Vậy d=1

=> 2 số tự nhiên là 2 số nguyên tố cùng nhau

b) Gọi 2 số lẻ liên tiếp là a ;a+2 và (a;a+2)=d

Ta có: a chia hết cho d

a+2 chia hết cho d

=> (a+2)-a=2 chia hết cho d

=> d thuộc Ư(2)={1;2}

Và a và a+2 ;à 2 số lẻ liên tiếp nên d ko =2 => d=1

=> 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau

Nguyễn Huy Hải
Xem chi tiết
OoO Kún Chảnh OoO
6 tháng 9 2015 lúc 13:54

Gọi hai số đó là:2k+1 và 2k+3(k thuộc N) và ƯCLN(2k+1,2k+3)=d

=>2k+1 chia hết cho d và 2k+3 chia hết cho d

=>(2k+1)-(2k+3) chia hết cho d

=>2 chia hết cho d =>ƯCLN(2k+1,2k+3) thuộc 1 hoặc 2

Mà 2k+1 và 2k+3 là số lẻ 

=>ƯCLN(2k+1,2k+3)=1

=>2 số lẻ liên tiếp là hai số nguyên tố cùng nhau

Tạ Quang Duy
6 tháng 9 2015 lúc 13:55

 gọi ước chung của 2 sô d và 2 số lẻ liên tiếp là a và a+2

=>(a+200-a chia hết cho d

=>2 chia hết cho d

=>d=1 hoặc d=2

mà 2 số đó là số lẻ nên d\(\ne\)2

=>d=1

=> hai số đó nguyên tố cùng nhau

Đinh Thị Thu Hằng
24 tháng 7 2018 lúc 19:46

Công chúa giá băng phải là

(2k+3)-(2k+1)

Ninh Thế Quang Nhật
Xem chi tiết
nguyễn huy hải
2 tháng 4 2016 lúc 11:30

gọi 2 số lẻ đó là 2k+1 và 2k+3 
gọi ước chung lớn nhất của 2 số lẻ đó là p 
=>2k+1 chia hết cho p; 2k+3 chia hết cho p 
=>2k+3-2k-1=2 chia hết cho p 
=>p=1;2 
trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ

Ninh Thế Quang Nhật
2 tháng 4 2016 lúc 11:32

Gọi số lẻ thứ nhất là 2n + 1 => số lẻ thứ 2 là 2n + 3 ( với mọi n lớn hơn hoặc bằng d )

Gọi d là ƯC 2n+ 1 và 2n + 3

Hay d thuộc ƯC ( 2n+1 ; 2n+3 )

=> [ 2n + 1 - ( 2n + 3 )] chia hết cho d

=> [ 2n + 1 - 2n - 3 ] chia hết cho d

=> -2 chia hết cho d => d là Ư của 2 => d = { 1 ; 2 }

Vì 2n + 1 là số lẻ => 3n + 1 ko chia hết cho 2

     2n + 3 là số lẻ => 2n + 3 ko chia hết cho 2

tổng hợp hai điều trên => d = 1

ƯC ( 2n+1;2n+3 ) = 1

=> 2n + 1 và 2n+ 3 nguyên tố cùng nhau

Vậy ...........................

QuocDat
2 tháng 4 2016 lúc 11:37

Hai số lẻ liên tiếp có dạng 2n + 1 và 2n + 3   (n ∈ N)

Đặt d ∈ ƯC(2n + 1 ; 2n + 3)  (d ∈ N*)  => 2n + 1 chia hết cho d và 2n + 3 chia hết cho d.

Vậy (2n + 3) - (2n + 1) chia hết cho d <=> 2 chia hết => d ∈ Ư ( 2) <=> d ∈ ( 1,2 ) 

Nhưng d ≠ 2 vì d là ước của số lẻ . Vậy d = 1

Vậy hai số lẻ liên tiếp nguyên tố cùng nhau.

nguyen thi mai
Xem chi tiết
Lê Diệu Chinh
Xem chi tiết
Lovely_friend_cute
4 tháng 12 2016 lúc 15:29

Gọi 2 số TN liên tiếp là n và n+1

Gọi d là \(ƯCLN\left(n,n+1\right)\)

Ta có n chia hết cho d

         n+1 chia hết cho d

\(\Rightarrow\)(n+1)-n chia hết cho d

\(\Rightarrow\)1 chia hết cho d

\(\Rightarrow d=1\)

Vậy hai số TN liên tiếp là 2 số nguyên tố cùng nhau

GoKu Đại Chiến Super Man
Xem chi tiết
Nguyễn Ngọc Quý
24 tháng 11 2015 lúc 11:33

a) 2 số đó có dạng a ; a + 1

ĐẶt UCLN(a ; a + 1) = d

a chia hết cho d

a + 1 chia hết cho d 

=> [(a + 1) - a] chia hết cho d

1 chia hết cho d => d = 1

Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau

Tương tự 

Zeref Dragneel
24 tháng 11 2015 lúc 11:34

a) ) Gọi d là ƯC (n, n + 1)=>  (n + 1) - n   chia hết cho d=>  d = 1. Vậy n và n + 1 là hai số nguyên tố cùng nhau.

kudoshinichi
Xem chi tiết
KAITO KID
26 tháng 11 2018 lúc 19:42

Câu hỏi của Nguyễn Minh Bảo Anh - Toán lớp 6 | Học trực tuyến

Tham khảo nha !

kudoshinichi
26 tháng 11 2018 lúc 19:43

Đào nhật minh à

Dark Plane Master
Xem chi tiết
Hà Phương Trần Thị
27 tháng 11 2015 lúc 21:38

gọi hai số đó là a và a+1

Ư{a;a+1} = d

a : d 

a+1:d

=> (a+1)-a=1 :d

=> d = 1 (ĐPCM)

Ice Wings
27 tháng 11 2015 lúc 21:40

Gọi 2 số tự nhiên liên đó là a,a+1 là d là ƯCLN(a;a+1)

Ta có: a chia hết cho d

a+1 chia hết cho d

=> (a+1)-a =1 chia hết cho d

=> d thuộc Ư(1)={1}

=> d=1

Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau

tiên nữ giáng trần
Xem chi tiết
DanAlex
23 tháng 4 2017 lúc 10:17

Gọi 2 số tự nhiên lẻ liên tiếp là 2k+1 và 2k+3 và ƯCLN(2k+1;2k+3)=d

\(\Rightarrow\)2k+1 chia hết cho d và 2k+3 chia hết cho d

\(\Rightarrow\)(2k+1) - (2k+3) chia hết cho d

\(\Rightarrow\)2 chia hết cho d \(\Rightarrow\)ƯCLN(2k+1;2k+3) thuộc 1 hoặc 2

Vì 2k+1 và 2k+3 là số lẻ nên d là số lẻ. \(\Rightarrow d=1\)

\(\Rightarrow\)ƯCLN(2k+1;2k+3)=1

Vậy 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau