Chứng minh rằng: từ \(2^{n+1}-1\) số nguyên bất kì với n \(\in\) N*, có thể tìm được 2n số mà tổng của 2n số này chia hết cho 2.
chứng tỏ rằng trong 52 số tự nhiên bất kì bao giờ cũng có thể tìm được 2 số có tổng hoặc hiệu chia hết cho 100.
Chứng minh rằng với n thuộc số tự nhiên thì A= 21 mũ 2n+1 + 17 mũ 2n+1 + 15 ko chia hết cho 9
Chứng minh rằng trong n + 1 số bất kì thuộc tập hợp { 1 ; 2 ; 3 ;.....; 2n } luôn tìm được hai số mà số này là bội của số kia.
https://www.youtube.com/watch?v=TA-H3IRTRLw
Xem đi;đoạn 16:52 , toi không học dirichlet nên chỉ hiểu sơ sơ :)
1.CMR trong 12 số tự nhiên bất kì có thể tìm đc 2 số có hiệu của chúng chia hết cho 11
2.CMR trong 15 số tự nhiên bất kì có thể tìm đc 2 số có hiệu của chúng chia hết cho 14
3.CM tồn tại 1 số chia hết cho 1995 mà các chữ số của số đó chỉ gồm các chữ số 2 và chữ số 0
4.CMR nếu có n số tự nhiên có tích bằng n và có tổng bằng 2012 thì n chia hết cho 4
5.tìm số tự nhiên n sao cho :
a) n+3 chia hết cho n-2 ( n>2)
b)2n+9 chia hết cho n-3 ( n>3)
c)(16-3n ) chia hết cho (n+4) với n<6
d) (5n+2) chia hết cho (9-2n)
Bài 5 : ( Mình dùng dấu chia hết là dấu hai chấm )
a) n+3 : n-2
=> n+3 : n+3-5
=> n+3 : 5 ( Vì n+3 : n+3 )
=> n+3 là Ư(5) => Bạn tự làm tiếp nhé!
b) 2n+9 : n-3
=> n + n + 11 - 3 : n-3
=> n + 11 : n-3
=> n + 14 - 3 : n-3
=> 14 : n - 3 ( Vì n - 3 : n-3 )
=> n-3 là Ư(14) => Tự làm tiếp
c) + d) thì bạn tự làm nhé!
-> Chúc bạn học giỏi :))
Có 2n + 1 đồng xu với khối lượng là các số nguyên. Biết rằng cứ 2n đồng xu bất kì đều có thể chia thành 2 nhóm, mỗi nhóm n đồng xu sao cho tổng khối lượng của các đồng xu trong từng nhóm bằng nhau. Chứng minh rằng khối lượng tất cả các đồng xu đều bằng nhau.
Chứng minh rằng trong n+1 số bất kì tronng tập hợp { 1,2,3,...,2n } luôn chọn được 2 số mà số này là bội số kia
Chứng minh rằng trong 2n - 1 số tự nhiên khác nhau luôn tìm được n số có tổng chia hết cho n (n nguyên dương)
chứng minh rằng trong n số nguyên bất kì bao giờ cũng chọn được 1 hoặc 1 vài số mà tổng của các số vừa chọn chia hết cho n
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
1) Cho 3 số nguyên x ; y ; z biết x nhân x + y nhân y = z nhân z . chứng minh rằng x nhân y nhân z chia hết cho 60
2) Tìm số dư của a nhân a khi chia cho 3; 4 ; 5
3) Cho m ; n thuộc Z chứng minh rằng :
a) n mũ 3 - a chia hết cho 6
b) m mũ 3 nhân n - m nhân n mũ 3 chia hết cho 6
c) n nhân ( n + 1 ) nhân ( 2n + 1 )
4) Cho 31 số nguyên trong đó có tổng của 5 số nguyên bất kì là một số nguyên dương . Chứng minh rằng tổng của 31 số nguyên đó là một số nguyên dương