cho A = 3+3^3+3^5+...+3^2015
chứng minh A chia hết cho 13
cho S=3^1 3^2 3^3=............ 3^2015chứng minh rằng: S chia hết cho 70
Cho A=3+3^3+3^5+...+3^1991
Chứng minh:
a)A chia hết cho 13
b)A chia hết cho 41
gợi ý:
a) nhóm 3 số liên tiếp thành 1 cặp:
A = (3 + 33 + 35) + .....
b) nhóm 4 số liên tiếp thành 1 nhóm
A = (3 + 33 + 35 + 37) + ....
ta co
A=3+33+35+...+31991
A=(3+33+35)+(37+39+311)+...+(31987+31989+31991)
A=(3+33+35)+36(3+33+35)+....+31986(3+33+35)
A=273+273.36+...+273.31986
A=273(36+31986) Vi\(273⋮13\)
\(\Leftrightarrow A⋮13\)
b)A = ( 3 + 3² + 3^5 + 3^7 ) + ( 3^9 + 3^11 + 3^13 + 3^15 ) + . + ( 3^1991 + 3^1989 + 3^1987 + 3^1985 )
A = 2442 + 3^9( 3 + 3² + 3^5 + 3^7 ) + .......... + 3^1985( 3 + 3² + 3^5 + 3^7 )
A = 2442 + 3^9 . 2442 + ........... + 3^1985.2442
Do 2442 chia hết cho 41 => A chia hết cho 41
a/ Chứng minh: A = 2^1 + 2^2 + 2^3 + 2^4 +......+ 2^2010 chia hết cho 3 và 7
b/ Chứng minh: B = 3^1 + 3^2 + 3^3 + 3^4 +......+ 3^2010 chia hết cho 4 và 13
c/ Chứng minh: C = 5^1 + 5^2 + 5^3 + 5^4 +......+ 5^2010 chết hết cho 6 và 31
A=2^1+2^2+2^3+2^4+...+2^2010
=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)
=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)
=2.3+2^3.3+...+2^2010.3
=(2+2^3+2^2010).3
=> A chia het cho 3
Mà câu c bạn đánh chia hết thành chết hết rồi kìa
Bài 1 :
Cho A = \(1+3+3^2+....+3^{11}\) . Chứng minh rằng :
a) A chia hết cho 13 b) A chia hết cho 40
Bài 2 :
Cho C = \(3+3^2+3^3+3^4+......+3^{100}\) . Chứng minh rằng : C chia hết cho 40 .
Bài 3 :
Cho biểu thức : M = \(1+3+3^2+3^3+......+3^{118}+3^{119^{ }}\)
a) Thu gọn biểu thức M b) Biểu thức M có chia hết cho 5 , 13 không . Vì sao ?
Bài 4 :
Cho S = \(5+5^2+5^3+5^4+5^5+5^6+.......+5^{2012}\) . Chứng minh rằng S chia hết cho 65.
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
Bài 1 :
Cho A = 13 + \(13^2+13^3+13^4+13^5+13^6.\) Chứng minh rằng A \(\)chia hết cho 2 .
Bài 2 :
Cho C = \(2+2^2+2^3+.....+2^{2011}+2^{2012}\). Chứng minh rằng C chia hết cho 3 .
Bài 3 :
Chứng minh rằng : A = \(2^1+2^2+2^3+.....+2^{59}+2^{60}\)chia hết cho 7
Bài 4 :
Cho A = \(7+7^3+7^5+....+7^{1999}\) . Chứng minh rằng A chia hết cho 35
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
Bài toán 1:
Cho A = 3 + 3^3 + 3^5 + ... + 3^1991
Chứng minh A chia hết cho 13, chia hết cho 14
Bài toán 2:
Chứng minh rằng : (n+7) . (n+8) . (n+9) chia hết cho 2 và chia hết cho 3 (n thuộc N)
Cho A= 3+3^2+3^3+3^4+3^5+...+3^90. Chứng minh rằng A chia hết cho 11 và 13
\(A=3+3^2+3^3+3^4+...+3^{90}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{86}+3^{87}+3^{88}+3^{89}+3^{90}\right)\)
\(=3.\left(1+3+3^2+3^3+3^4\right)+...+3^{86}\left(1+3+3^2+3^3+3^4\right)\)
\(=3.121+...+3^{36}.121\)
\(=121\left(3+...+3^{86}\right)⋮11\left(dpcm\right)\)
\(A=3+3^2+3^3+3^4+...+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(=\left(3+3^2+3^3\right)+\left(3^3.3+3^3.3^2+3^3.3^3\right)+...+\left(3^{87}.3+3^{87}.3^2+3^{87}.3\right)\)
\(=\left(3+3^2+3^3\right)+3^3\left(3+3^2+3^3\right)+...+3^{87}\left(3+3^2+3^3\right)\)
\(=39.1+3^3.39+...3^{87}.39\)
\(=39\left(3^3+1+...+3^{87}\right)\)
\(=13.3\left(3^3+1+...+3^{87}\right)⋮13\left(dpcm\right)\)
A = 3 + 33 + 35 + ... + 32015chứng minh rằng
A chia hết cho 13
A chia hết cho 41
Chứng minh :
A = 5 + 5^2 + 5^3 + . . . + 5^99 + 5^100 chia hết cho 6
B = 2 + 2^2 + 2^3 + . . . + 2^99 + 2^100 chia hết cho 31
C = 3 + 3^2 + 3^3 + . . . + 3^60 chia hết cho 4, cho 13
A=5+52+...+599+5100
=(5+52)+...+(599+5100)
=5.(1+5)+...+599.(1+5)
=5.6+...+599.6
=6.(5+...+599) chia hết cho 6 (dpcm)
Ccá câu khcs bạn cứ dựa vào câu a mà làm vì cách làm tương tự chỉ hơi khác 1 chút thôi
Chúc bạn học giỏi nha!!
\(A=5+5^2+5^3+...+5^{100}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{99}+5^{100}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{99}.6\)
\(=6\left(5+5^3+...+5^{99}\right)⋮6\)(đpcm)
\(B=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+...+2^{96}.31\)
\(=31\left(2+...+9^{96}\right)⋮31\)(đpcm)
\(C=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)
\(=3.4+3^3.4+...+3^{59}.4\)
\(=4\left(3+3^3+...+3^{59}\right)⋮4\)(đpcm)
\(C=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=3.13+...+3^{58}.13\)
\(=13\left(3+...+3^{58}\right)⋮13\)(đpcm)