Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Hoang
Xem chi tiết
Nguyễn Thành Công
19 tháng 10 2015 lúc 23:17

ĐKXĐ: \(x>2;y>1\)

Khi đó Pt \(\Leftrightarrow\)\(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}+\frac{4}{\sqrt{y-1}}+\sqrt{y-1}=28\)

theo BĐT Cô si ta có \(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}\ge2.\sqrt{\frac{36}{\sqrt{x-2}}.4\sqrt{x-2}=24}\)

                                  và \(\frac{4}{\sqrt{y-1}}+\sqrt{y-1}\ge2\sqrt{\frac{4}{\sqrt{y-1}}.\sqrt{y-1}}=4\)

Pt đã cho có VT>= 28 Dấu "=" xảy ra \(\Leftrightarrow\)

\(\frac{36}{\sqrt{x-2}}=4\sqrt{x-2}\Leftrightarrow x=11\)

và \(\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\Leftrightarrow y=5\)

Đối chiếu với ĐK thì x=11; y=5 là nghiệm của PT

Nguyễn Trang
19 tháng 10 2015 lúc 23:13

Ê Thắng tưởng off dòi mờ...nhanh thế....

Trang Hoang
Xem chi tiết
Mr Lazy
8 tháng 10 2015 lúc 18:39

ĐK: \(x\ge-1\)

\(\frac{pt\Leftrightarrow\sqrt{x+1}\sqrt{x^2-x+1}}{\sqrt{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)

\(\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+3}}\left(\sqrt{x^2-x+1}+\sqrt{x+3}\right)=\sqrt{x^2-x+1}+\sqrt{x+3}\)

\(\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+3}}=1\text{ (do }\sqrt{x^2-x+1}>0\text{)}\)

\(\Leftrightarrow...\)

Trang Hoang
Xem chi tiết
Mr Lazy
13 tháng 10 2015 lúc 19:42

\(VT=1.\sqrt{x}+2.\sqrt{x+3}\le\frac{x+1}{2}+\frac{2^2+x+3}{2}=x+4=VP\)

Trang Hoang
Xem chi tiết
Mr Lazy
8 tháng 10 2015 lúc 18:36

ĐK: \(x\ne0;\pm\sqrt{2}\)

Đặt \(x=a;\text{ }\sqrt{2-x^2}=b\Rightarrow a^2+b^2=2\text{ (1)}\)

pt đã cho: \(\frac{1}{a}+\frac{1}{b}=2\Leftrightarrow a+b=2ab\)

\(\left(1\right)\Leftrightarrow\left(a+b\right)^2-2ab=2\Leftrightarrow\left(a+b\right)^2-\left(a+b\right)-2=0\)

\(\Leftrightarrow a+b=-1\text{ hoặc }a+b=2\)

\(+TH1:\text{ }a+b=-1\Rightarrow x+\sqrt{2-x^2}=-1\Leftrightarrow\sqrt{2-x^2}=-x-1\)

\(\Rightarrow2-x^2=\left(-x-1\right)^2\Leftrightarrow2x^2+2x-1=0\)

\(\Leftrightarrow x=\frac{-1\pm\sqrt{3}}{2}\)

\(TH2:\text{ }a+b=2\) tương tự

Do dùng khá nhiều phép suy ra nên phải thử lại các nghiệm trước khi kết luận.

 

Trang Hoang
Xem chi tiết
Phụng Nguyễn Thị
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 10 2019 lúc 0:12

a/ ĐKXĐ: ...

\(\Leftrightarrow3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)-7\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow a^2=x+\frac{1}{4x}+1\)

\(\Rightarrow x+\frac{1}{4x}=a^2-1\)

Pt trở thành:

\(3a=2\left(a^2-1\right)-7\)

\(\Leftrightarrow2a^2-3a-9=9\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=3\)

\(\Leftrightarrow2x-6\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=\frac{3+\sqrt{7}}{2}\Rightarrow x=\frac{8+3\sqrt{7}}{2}\)

b/ ĐKXĐ:

\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow x+\frac{1}{4x}=a^2-1\)

\(\Rightarrow5a=2\left(a^2-1\right)+4\Leftrightarrow2a^2-5a+2=0\)

\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\frac{1}{2\sqrt{x}}=2\\\sqrt{x}+\frac{1}{2\sqrt{x}}=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x-4\sqrt{x}+1=0\\2x-\sqrt{x}+1=0\left(vn\right)\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
27 tháng 10 2019 lúc 0:22

c/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\frac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\frac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

d/ ĐKXĐ: ...

\(\Leftrightarrow x+1-\frac{15}{6}\sqrt{x}+\sqrt{x^2-4x+1}-\frac{1}{2}\sqrt{x}=0\)

\(\Leftrightarrow\frac{x^2-\frac{17}{4}x+1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{x^2-\frac{17}{4}x+1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}=0\)

\(\Leftrightarrow\left(x^2-\frac{17}{4}x+1\right)\left(\frac{1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}\right)=0\)

\(\Leftrightarrow x^2-\frac{17}{4}x+1=0\)

\(\Leftrightarrow4x^2-17x+4=0\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
27 tháng 10 2019 lúc 0:29

e/ ĐKXĐ: ...

\(\Leftrightarrow x^2-1+2x\sqrt{\frac{x^2-1}{x}}=3x\)

Nhận thấy \(x=0\) không phải nghiệm, pt tương đương:

\(\frac{x^2-1}{x}+2\sqrt{\frac{x^2-1}{x}}=3\)

Đặt \(\sqrt{\frac{x^2-1}{x}}=a\ge0\)

\(a^2+2a=3\Leftrightarrow a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\frac{x^2-1}{x}}=1\Leftrightarrow x^2-1=x\Leftrightarrow x^2-x-1=0\)

f/ ĐKXĐ: ...

\(\Leftrightarrow x^2-6+x\sqrt{\frac{x^2-6}{x}}-6x=0\)

Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:

\(\frac{x^2-6}{x}+\sqrt{\frac{x^2-6}{x}}-6=0\)

Đặt \(\sqrt{\frac{x^2-6}{x}}=a\ge0\)

\(a^2+a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{\frac{x^2-6}{x}}=2\Leftrightarrow x^2-4x-6=0\)

Khách vãng lai đã xóa
Nguyễn Ngọc Anh
Xem chi tiết
Trí Tiên亗
2 tháng 9 2020 lúc 9:53

Bạn xem lại đề câu b và c nhé !

a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)

\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)

\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ

\(\Rightarrow x\ge2\) thỏa mãn đề.

d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)

\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)

Pt tương đương :

\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )

e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)

\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)

Phương trình (1) tương đương :

\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )

Khách vãng lai đã xóa
Dương Thanh Ngân
Xem chi tiết