cho tam giác abc có a(3,5), b(1,2), c(5,2)
a) tìm tọa độ trung điểm I của bc
b) tìm tọa độ trọng tâm G của abc
c) tìm tọa độ D để abcd là hình bình hành
Cho tam giác ABC với A(3;2),B(-11;0),C(5;4)
a) Tìm tọa độ trung điểm I của AB
b) Tìm tọa độ trọng tâm G của tam giác ABC.
c) Tìm tọa độ điểm M sao cho B là trung điểm của đoạn MC.
d) Tìm tọa độ điểm D để ABCD là hình bình hành.
\(I\left(\frac{3-11}{2};\frac{2+0}{2}\right)\Rightarrow I\left(-4;1\right)\)
\(G\left(\frac{3+5-11}{3};\frac{2+4+0}{3}\right)\Rightarrow G\left(-1;2\right)\)
\(M\left(-22-5;0-4\right)\Rightarrow M\left(-27;-4\right)\)
\(D\left(3+5--11;2+4-0\right)\Rightarrow D\left(19;6\right)\)
Cho điểm A(1;-3), B(3;1), C(-2;0)
a, Tìm tọa độ trung điểm của AB, BC, CA.
b, Tìm tọa độ trọng tâm tam giác ABC
c, Tính d, Tìm D để ABCD là hình bình hành
Cho 3 điểm A(-3;2);B(0;4);C(1;-1)
a,3 điểm A,B,C có thẳng hàng không
b,Tính chu vi Tam giác ABC
c,Tìm tọa độ trung điểm AB,BC,CA
đ,Tìm tọa độ trọng tâm Tam giác ABC
e,Tìm tọa độ Đ sao cho ABCD là hình bình hành
f,Tìm tọa độ E sao cho ABCD là hình bình hành
a) Ta thấy \(\overrightarrow{AB}\left(3;2\right)\) và \(\overrightarrow{AC}\left(4;-3\right)\). Vì \(\dfrac{3}{4}\ne\dfrac{2}{-3}\) nên A, B, C không thẳng hàng.
b) Ta có \(\overrightarrow{BC}\left(1;-5\right)\)
Do vậy \(AB=\left|\overrightarrow{AB}\right|=\sqrt{3^2+2^2}=\sqrt{13}\)
\(AC=\left|\overrightarrow{AC}\right|=\sqrt{4^2+\left(-3\right)^2}=5\)
\(BC=\left|\overrightarrow{BC}\right|=\sqrt{1^2+\left(-5\right)^2}=\sqrt{26}\)
\(\Rightarrow C_{ABC}=AB+AC+BC=5+\sqrt{13}+\sqrt{26}\)
c) Gọi M, N, P lần lượt là trung điểm BC, CA, AB.
\(\Rightarrow P=\left(\dfrac{x_A+x_B}{2};\dfrac{y_A+y_B}{2}\right)=\left(-\dfrac{3}{2};3\right)\)
\(N=\left(\dfrac{x_A+x_C}{2};\dfrac{y_A+y_C}{2}\right)=\left(-1;\dfrac{1}{2}\right)\)
\(M=\left(\dfrac{x_B+x_C}{2};\dfrac{y_B+y_C}{2}\right)=\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)
d) Gọi G là trọng tâm tam giác ABC thì \(G=\left(\dfrac{x_A+x_B+x_C}{3};\dfrac{y_A+y_B+y_C}{3}\right)=\left(-\dfrac{2}{3};\dfrac{5}{3}\right)\)
e) Gọi \(D\left(x_D;y_D\right)\) là điểm thỏa mãn ycbt.
Để ABCD là hình bình hành thì \(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Leftrightarrow\left(3;2\right)=\left(1-x_D;-1-y_D\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}3=1-x_D\\2=-1-y_D\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_D=-2\\y_D=-3\end{matrix}\right.\)
\(\Rightarrow D\left(-2;-3\right)\)
f) Bạn xem lại đề nhé.
Câu 1: Cho tam giác ABC có A(3,2); B(4,1) và C(1,5).
a/ Tìm tọa độ trọng tâm G của tam giác ABC.
b/ Tìm tọa độ điểm D để ABCD là hình bình hành
c/ Tìm tọa độ sao cho
Câu 2: Cho ngũ giác ABCDE. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DE. I, J là trung điểm của MP, NQ. Chứng minh rằng:
1.
a, Trọng Tâm G: \(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{8}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{8}{3}\end{matrix}\right.\)
\(\Rightarrow G=\left(\dfrac{8}{3};\dfrac{8}{3}\right)\)
b, \(ABCD\) là hình bình hành \(\Leftrightarrow\vec{AB}=\vec{DC}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_B-x_A=x_C-x_D\\y_B-y_A=y_C-y_D\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_D=0\\y_D=6\end{matrix}\right.\)
\(\Rightarrow D=\left(0;6\right)\)
c, \(\vec{AM}=3\vec{BC}\Leftrightarrow\left\{{}\begin{matrix}x_M=x_A+3\left(x_C-x_B\right)=-6\\y_M=y_A+3\left(y_C-y_B\right)=14\end{matrix}\right.\)
\(\Rightarrow M=\left(-6;14\right)\)
Cho điểm A(1;-3), B(3;1), C(-2;0)
a, Tìm tọa độ trung điểm của AB, BC, CA. b, Tìm tọa độ trọng tâm tam giác ABC c, Tính d, Tìm D để ABCD là hình bình hànhTrong mặt phẳng tọa độ Oxy, cho tam giác ABC với và . a) Tính tọa độ điểm G và vectơ ( với điểm G là trọng tâm tam giác ABC ). b) Gọi I là trung điểm của BC. Tìm tọa độ điểm D sao cho tứ giác ABID là hình bình hành.
a.
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-1;8\right)\\\overrightarrow{AC}=\left(3;6\right)\end{matrix}\right.\) mà \(\dfrac{-1}{3}\ne\dfrac{8}{6}\Rightarrow\overrightarrow{AB}\) và \(\overrightarrow{AC}\) không cùng phương hay A,B,C không thẳng hàng
\(\Rightarrow A,B,C\) là 3 đỉnh của 1 tam giác
b.
Theo công thức trung điểm: \(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_C}{2}=\dfrac{1+4}{2}=\dfrac{5}{2}\\y_I=\dfrac{y_A+y_C}{2}=\dfrac{-3+3}{2}=0\end{matrix}\right.\)
\(\Rightarrow C\left(\dfrac{5}{2};0\right)\)
Gọi G là trọng tâm tam giác, theo công thức trọng tâm:
\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1+0+4}{3}=\dfrac{5}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{-3+5+3}{3}=\dfrac{5}{3}\\\end{matrix}\right.\) \(\Rightarrow G\left(\dfrac{5}{3};\dfrac{5}{3}\right)\)
c.
Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(4-x;3-y\right)\)
ABCD là hình bình hành khi \(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Rightarrow\left\{{}\begin{matrix}4-x=-1\\3-y=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=-5\end{matrix}\right.\)
\(\Rightarrow D\left(5;-5\right)\)
Trong mặt phẳng tọa độ Oxy cho A(3; -1) ; B( -1; 2) và I( 1; -1) . Xác định tọa độ các điểm C; D sao cho tứ giác ABCD là hình bình hành biết I là trọng tâm tam giác ABC. Tìm tọa tâm O của hình bình hành ABCD
A.
B.
C.
D.
Trong mặt phẳng oxy, cho A(-1;5); B(1;-2); C(3;6) a) Chứng minh rằng A, B, C lập thành một tam giác. b) Tính tọa độ trọng tâm tam giác ABC. c) Tìm tọa độ điểm D của hình bình hành ABCD và tính tọa độ tâm của hình bình hành