Cho a,b,c là số dương thỏa mãn \(2a+4b+3c^2=68\) . Tìm GTNN của
A=\(a^2+b^2+c^3\)
Cho a, b, c là 3 số thực dương thỏa mãn: a+2b+3c=3. Tìm GTNN của biểu thức: \(Q=\dfrac{a+1}{1+4b^2}+\dfrac{2b+1}{1+9c^2}+\dfrac{3c+1}{1+a^2}\)
Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)
\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)
Ta có:
\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)
Tương tự:
\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)
Cộng vế:
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)
\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)
cho a, b, c là các số dương thỏa mãn a+b+c>=6. Tìm gtnn của biểu thức sau: P = 2a+4b+6c+4/a+12/b+20/c
\(P=\left(a+b+c\right)+\left(a+\frac{4}{a}\right)+\left(3b+\frac{12}{b}\right)+\left(5c+\frac{20}{c}\right)\)
Theo BĐT AM-GM và gt ta có: \(P\ge6+4+12+20=42\).
Đẳng thức xảy ra khi \(a=b=c=2\)
Vậy \(minP=42\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm GTNN của M=1/18(ab+bc+ca)-a^2/3a+1-b^2/3b+1-c^2/3c+1
Bài 6:Cho các số a,b,c khác 0 thỏa mãn
2a-2b+9c=9 Tính giá trị của M=a+3c/a+4b-3c
a-2b+6c=5
Bài 7 Cho a,b>0 thỏa mãn a+b=3.Tìm giá trị nhỏ nhất của biểu thức T=a^2+4/a+b^2/b+3
Bài 6:Cho các số a,b,c khác 0 thỏa mãn
2a-2b+9c=9 Tính giá trị của M=a+3c/a+4b-3c
a-2b+6c=5
Bài 7 Cho a,b>0 thỏa mãn a+b=3.Tìm giá trị nhỏ nhất của biểu thức T=a^2+4/a+b^2/b+3
cho ba số dương a,b,c thỏa mãn: 5a2+2abc+4b2+3c2=60. Tìm GTLN của : A=a+b+c
bạn chuyển về dạng pt bậc 2 rồi giải: 4b2 + 2abc + 5a2 + 3c2 - 60 = 0 . giải beta = (az)2 - 4( 5a2 + 3c2 - 60) = (-a2 + 12)(-c2 +20) > 01
\(b_1=\frac{-a^2+\sqrt{\left(-a^{2^{ }}+12\right)\left(-c^{2^{ }}+20\right)}}{4}\)\(\le\)..... \(\frac{3c-\left(a+c\right)^2}{8}\).
tương tự giải đối với a, c .. Suy ra : a+b+c\(\le\)\(\frac{35-\left(b+c\right)^2+10\left(b+c\right)}{10}\)= \(\frac{-t^2+10t+35}{10}\)=\(\frac{60-\left(t^2-10t+25\right)^{ }}{10}\)=\(\frac{60-\left(t-5\right)^2}{10}\)=\(\frac{60-\left(b+c-5^{ }\right)^2}{10}\)\(\le\)\(\frac{60}{10}=6\).Dấu bằng xảy ra\(\Leftrightarrow\) b +c - 5 = 0 và 15- b2 = 20 - c2
\(\Leftrightarrow\)a=1,b= 2, c= 3.
Cho a,b,c là các số dương thỏa mãn: a + b + c = 3. Tìm GTNN của:
\(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Ta có BĐT sau:
\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
\(\Leftrightarrow a^3+b^3+c^3+ab^2+bc^2+ca^2\ge2a^2b+2b^2c+2c^2a\)
Sử dụng AM - GM ta dễ có được:
\(a^3+ab^2\ge2\sqrt{a^4b^2}=2a^2b\)
\(b^3+bc^2\ge2\sqrt{b^4c^2}=2b^2c\)
\(c^3+c^2a\ge2\sqrt{c^4a^2}=2c^2a\)
\(\Rightarrow BĐT\) đầu tiên đúng
Khi đó ta có:
\(a^2+b^2+c^2\ge a^2b+b^2c+c^2a\Rightarrow P\ge a^2b+b^2c+c^2a+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Một vài đánh giá cơ bản rồi đặt ẩn phụ rồi xét đạo hàm phát ra nhé
@huybip5cc, bn giải kĩ ra giúp mk nhé, mk dốt lắm, nhìn vậy ko hiểu đâu ạ, mơn nh!
cho ba số thực dương a,b,c thỏa mãn \(a^2+b^2+c^2=1\). Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{a^3}{2b+3c}+\dfrac{b^3}{2c+3a}+\dfrac{c^3}{2a+3b}\)
Áp dụng bđt Schwarz ta có:
\(P=\dfrac{a^4}{2ab+3ac}+\dfrac{b^4}{2cb+3ab}+\dfrac{c^4}{2ac+3bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)}=\dfrac{1}{5}\).
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{\sqrt{3}}{3}\).
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm GTNN của
\(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Cần các cao nhân giải khác phương pháp SS
Không làm theo cách đánh giá 3(a2b+b2c+c2a)\(\le\)(a+b+c)(a2+b2+c2)=3(a2+b2+c2)
Ai làm được xin cảm ơn trước
#)Giải :
Ta có : \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)
Áp dụng BĐT Cauchy :
\(\hept{\begin{cases}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{cases}}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9-\left(a^2+b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}\)
Đặt \(t=a^2+b^2+c^2\Rightarrow t\ge3\)
\(\Rightarrow P\ge t+\frac{9-t}{2t}=\frac{t}{2}+\frac{9}{2t}+\frac{t}{2}-\frac{1}{2}\ge3+\frac{3}{2}-\frac{1}{2}=4\)
\(\Rightarrow P\ge4\Rightarrow P_{min}=4\)
Dấu ''='' xảy ra khi a = b = c = 1
T.Ps copy bài anh Incursion_03, đáp án đề thi chuyên PBC à?