Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
pham trung thanh
Xem chi tiết
Phương Thảo Trần
Xem chi tiết
Phạm Ngọc
16 tháng 8 2016 lúc 20:33

chứng minh bằng phương pháp quy nap nhá bạn

Tuấn
16 tháng 8 2016 lúc 20:44

Viết lại đẳng thức cần cm 
\(1^3+2^3+..+n^3=\left(1+2+..+n\right)^2\)(*)
với n =1 thì \(1^3=1^2\)(ĐÚNG )
với n=2 thì \(1^3+2^3=9=3^2\)(ĐÚNG)

Giả sử (*) đúng với \(n=k\left(k\in N,k\ne0\right)\Leftrightarrow1^3+2^3+..+k^3=\left(1+2+..+k\right)^2\)
Ta đi chứng minh (*) đúng với n=k+1
Thạt vậy \(1^3+2^3+..+k^3+\left(k+1\right)^3=\left(1+..+k\right)^2+\left(k+1\right)^3\)
\(=\left(1+..+k\right)^2+\left(k+1\right)\left(k+1\right)^2=\left(1+..+k\right)^2+k\left(k+1\right)^2+\left(k+1\right)^2\)
\(=\left(1+..+k\right)^2+2\left(k+1\right)\left(1+..+k\right)+\left(k+1\right)^2=\left(1+..+k+k+1\right)^2\)(dpcm )

Phương Thảo Trần
17 tháng 8 2016 lúc 6:50

cho em hỏi đoạn này:

\(\left(1+..+k^2\right)+k\left(k+1\right)^2+\left(k+1\right)^2.\)sao lại bằng \(\left(1+..+k\right)^2+2\left(k+1\right)\left(1+..+k\right)+\left(k+1\right)^2..\)

chỗ \(k\left(k+1\right)^2\)biến đổi làm sao ạ?

Hoàng Anh Trần
Xem chi tiết
Tuấn
5 tháng 8 2016 lúc 20:41

chtt là đc ý đầu 
ý sau thì dùng nhị neww

Hoàng Anh Trần
5 tháng 8 2016 lúc 21:02

chtt là j bác

Thái Dương Lê Văn
Xem chi tiết
Vân Bùi
Xem chi tiết
Dương Lam Hàng
14 tháng 7 2018 lúc 16:23

n là số nguyên dương

Bình phương hai vế, ta được:

\(\left(\sqrt{n+2}-\sqrt{n+1}\right)^2=n+2+n+1-2\sqrt{\left(n+2\right)\left(n+1\right)}\) \(=2n+3-2\sqrt{\left(n+2\right)\left(n+1\right)}\)

\(\left(\sqrt{n+1}-\sqrt{n}\right)^2=n+1+n-2\sqrt{n\left(n+1\right)}\) \(=2n+1-2\sqrt{n\left(n+1\right)}\)

Ta có: \(\left(n+2\right)\left(n+1\right)>n\left(n+1\right)\Rightarrow2\sqrt{\left(n+2\right)\left(n+1\right)}>2\sqrt{n\left(n+1\right)}\)

Mà 2n + 3 > 2n + 1

 \(\Rightarrow2n+3-2\sqrt{\left(n+2\right)\left(n+1\right)}>2n+1-2\sqrt{n\left(n+1\right)}\)

=> ( √n+2 -  √n+1)^2 > ( √n-1 -  √n)^2

=>  √n+2 -  √n+1 >  √n-1 -  √n

P/s: Em làm còn sai nhiều, mong mọi người góp ý, đừng chọn sai cho em. Em cảm ơn

Vân Bùi
14 tháng 7 2018 lúc 16:33

Hình như sai b ạ

Trần Phúc
14 tháng 7 2018 lúc 20:00

\(\sqrt{n+2}-\sqrt{n+1}\) và \(\sqrt{n+1}-\sqrt{n}\)

Bình phương mỗi số hạng, ta có:

\(\left(\sqrt{n+2}\right)^2-\left(\sqrt{n+1}\right)^2\) và \(\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2\)

\(n+2-n+1\) và \(n+1-n\) ( Vì \(n\ge0\))

\(3\) và \(1\)

\(\Rightarrow3>1\)

Vậy \(\sqrt{n+2}-\sqrt{n+1}>\sqrt{n+1}-\sqrt{n}\)

Nguyen Ngoc Thuy Linh
Xem chi tiết
bui thi lan phuong
15 tháng 5 2017 lúc 16:24

cần gấp ko bn 

Nguyen Ngoc Thuy Linh
15 tháng 5 2017 lúc 16:31

có bạn. mai mk faj nộp r

nguyễn khắc biên
Xem chi tiết
Thiên An
1 tháng 8 2017 lúc 16:57

4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)

\(6\sqrt{55}\)  là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa  \(\sqrt{55}\)

Đặt  \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\)  với  \(a,b\in N\)

\(\Rightarrow a+b=6\)

Xét các TH:

a = 0 => b = 6

a = 1 => b = 5

a = 2 => b = 4

a = 3 => b = 3

a = 4 => b = 2

a = 5 => b = 1

a = 6 => b = 0

Từ đó dễ dàng tìm đc x, y

phạm anh thơ
3 tháng 8 2017 lúc 14:35

Biên cưng. Minh Quân đây. 

The darksied
Xem chi tiết
Lê Nguyên Bách
2 tháng 11 2015 lúc 12:48

n2 + 6n = n(n + 6) chia hết n

Mà n2 + 6n phải là số nguyên tố => n = 1

Thử lại: n(n + 6) = 7 nguyên tố

Vậy n = 1

soyeon_Tiểubàng giải
Xem chi tiết
Perfect Blue
30 tháng 11 2016 lúc 12:26

Bài này trên gg có

Cường Mạnh
13 tháng 5 2023 lúc 22:16

Ta có: \sqrt[{k + 1}]{{\frac{{k + 1}}{k}}} > 1,\left( {k = \overline {1,n} } \right)

Áp dụng bất đẳng thức Cauchy cho k + 1 số ta có: 

\begin{matrix}
  \sqrt[{k + 1}]{{\dfrac{{k + 1}}{k}}} = \sqrt[{k + 1}]{{\dfrac{{1 + 1 + .... + 1}}{k}\dfrac{{k + 1}}{k}}} < \dfrac{{1 + 1 + ... + 1 + \dfrac{{k + 1}}{k}}}{{k + 1}} = \dfrac{k}{{k + 1}} + \dfrac{1}{k} = 1 + \dfrac{1}{{k\left( {k + 1} \right)}} \hfill \\
   \Rightarrow 1 < \sqrt[{k + 1}]{{\dfrac{{k + 1}}{k}}} < 1 + \left( {\dfrac{1}{k} - \dfrac{1}{{k + 1}}} \right) \hfill \\ 
\end{matrix}

Lần lượt cho k = 1, 2, 3, ... rồi cộng lại ta được 

n < \sqrt 2  + \sqrt[3]{{\frac{3}{2}}} + ... + \sqrt[{n + 1}]{{\frac{{n + 1}}{n}}} < n + 1 - \frac{1}{n} < n + 1 
   \Rightarrow \left| \alpha  \right| = n