Bài 1:Tìm xeQ:
a)(-3).(x+2) <0
b)(x-1).(x+\(\dfrac{1}{3}\)) >0
Tìm xEQ để
a, (x-2/5).(x+3/7).(x+3/4)>0
b, (x-3/10).(x+10/9)<0
c, 1/x \(\in\)Z (x khác 0)
tìm xEQ, biết:
a)(x+1)(x-2)<0
b)(x-2)(x+2/3)>0
a) \(\left(x+1\right)\left(x-2\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-1< x< 2\\x\in\varnothing\end{matrix}\right.\) vậy \(-1< x< 2\)
b) \(\left(x-2\right)\left(x+\dfrac{2}{3}\right)>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\dfrac{2}{3}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>\dfrac{-2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< \dfrac{-2}{3}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< \dfrac{-2}{3}\end{matrix}\right.\) vậy \(x>2\) hoặc \(x< \dfrac{-2}{3}\)
TÌM xEQ biết
a) |x^2 - 3x|=0
b) |4x - 4|=4x-4
c) |2x - 3|=3x - 2
d) |5x - 1|=|3 - 2x|
e) x+1| + |x-3|=3
Ai bít thì giúp vs ^^!
a, |x^2 - 3x| = 0
=> x^2 - 3x = 0
=> x(x - 3) = 0
=> x = 0 hoặc x - 3 = 0
=> x = 0 hoặc x = 3
vậy_
\(\left|a^2-3a\right|=0\)
\(\Rightarrow a^2-3a=0\)
\(\Rightarrow a\left(a-3\right)=0\)
\(\Rightarrow\hept{\begin{cases}a=0\\a=3\end{cases}}\)
Trả lời
Vì lx2-3xl=0
Nên x2-3x=0
=>x(x-3)=0
x=0. x-3=0
x=3
Học tốt
1. Tìm xeQ :
a, 1/3 + 1/2 : x = -4
b, 3/4 + 1/4 : x = 2/5
giúp e vs
ghi rõ giupd e vs
a)\(\frac{1}{3}+\frac{1}{2}:x=-4\)
\(\Leftrightarrow\frac{1}{2}:x=-\frac{13}{3}\)
\(\Leftrightarrow x=-\frac{3}{26}\)
b)\(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{4}:x=-\frac{7}{20}\)
\(\Leftrightarrow x=-\frac{5}{7}\)
#H
tim xeQ biet
a.-2x+1<7
b(x+2).(x-3)<0
minh can gap nha
nhanh mih se k
Giải đầy đủ hộ mình nhé :
Bài 1: Tìm x,y,;biết
a, x+y=2
b,y+z=3
c,z+x=-5
Bài 2 : Tìm x,y thuộc Z, biết (x-3).(y+2)=-5
Bài 3 : Tìm a thuộc Z, biết a.(a+2)<0
Bài 4 : Tìm x thuộc Z, sao cho (x2 -4).(x2-10)<0
Bài 5 Tìm x thuộc Z, biết (x2-1).(x2-4)<0
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Bài 1:
a, (x+1)^2-(x-1)^2-3(x+1)(x-1)
b, 5(x+2)(x-2)-1/2(6-8x)^2+17
Bài 2: Tìm x
a, 25x^2-9=0
b, (x+4)-(x+1)(x-1)=16
c, (2x-1)^2 +(x+3)^2-5(x+7)(x-7)=0
Bài 3: Tìm GTNN
A= x^2+5X=7
Bài 4 : Tìm GTLN
B= 6x -x^2-5
Bài 5:Cho x-y=-5. Tính giá trị của N=(x-y)^3-x^2+2xy-y^2
bài 1:
a) (x+1)^2-(x-1)^2-3(x+1)(x-1)
=(x+1+x-1)(x+1-x+1)-3x^2-3
=2x^2-3x^2-3
=-x^2-3
Bài 1:
a/ A = x.(x-2). Tìm x để A lớn hơn hoặc bằng 0; A < 0
b/ B = -x + 2 phần 3 -x. Tìm x để B > 0; B bé hơn hoặc bằng 0.
Bài 2: Tìm x để:
a/ |x| < 2
b/ |x-2| < 3
a) A=x(x-2)
Để A>0
TH1: x>0 và x-2 < 0 ==> 0<x<2
TH2: x< 0 và x-2 >0 ===> Không có giá trị nào của x thỏa mãn;
Vậy : Để A< 0 thì 0<x<2
Để A lớn hơn hoặc bằng 0 thì :
TH1: x >=0 và x-2>=0 ===> x>=2
TH2 : x<=0 và x-2<=2 ===> x<=2
như vậy, để A lớn hơn hoặc bằng 0 thì x>=2 hoặc x<=2
Bài 1:
a/ A = x.(x-2). Tìm x để A lớn hơn hoặc bằng 0; A < 0
b/ B = -x + 2 phần 3 -x. Tìm x để B > 0; B bé hơn hoặc bằng 0.
Bài 2: Tìm x để:
a/ |x| < 2
b/ |x-2| < 3
để A = x.(x-2) >=0 thi
TH1
x< hoac bang 0 =>x nho hon hoc bang 2
x-2< hoac bang => x<2 =>x nho hon hoc bang 2
TH2
x> hoac bang 0
x-2> hoac bang 0 => xon hon hoac bang 2
Vay x lon hon hoac bang 2 hoac nho hon hoac bang 2
By Tuấn