chung to rang:
A= 2 + 2^ + 2^3 + 2^4 + ... + 2^90
chung to rang:
A= 2 + 2^2 + 2^3 + 2^4 + ...+ 2^90
chia het cho 21 bn Nguyễn Phúc Thịnh
B1 : chung to rang ( 8n+6 ) ( 5n+7 ) chia het cho 2
B2: chung to rang : 1090 chia hết cho 2 và 3
choA = 2 + 2^2 +2^3 +2^4+...+ 2^60
chung to rang A : 3
Cho A = 2+2^2+2^3+2^4+...+2^60. Chung to rang A chia het cho 3;7va 15
Ta có :
=2+2^2+2^3+...+2^60 = 2(1+2+2^2+2^3) + 2^5(1+2+2^2+2^3) + ... + 2^57(1+2+2^2+2^3)
A=(2+2^5+...+2^57)*15 chia het cho 15
CM:
A chia hết cho 21
=> A chia hết cho 3 và 7
Ta có
A=2(1+2)+2^3(1+2)+..............+2^59(1...
A=3(2+2^3+2^5+........+2^59)chia hết cho 3
Ta có :
A=2(1+2+2^2)+2^4(1+2+2^2)+...........+2...
A=7(2+2^4+2^7+..........+2^58)
=> A chia hết cho 3 và 7=> A chia hết
Vậy A chia hết cho 21 và 15
cho A = 2+ 2^2+2^3+2^4+....+2^60
chung to rang A chia het cho 3
\(A=2\left(2+1\right)+2^3\left(2+1\right)+2^5\left(1+2\right)+.....+2^{59}\left(2+1\right)\)
\(=2.3+2^3.3+2^5.3+.....+2^{59}.3\)
Vậy \(A⋮3\)
Chung to rang goc tao boi 2 tis phan giac cua 2 goc ke bu =90°
Cho A=1/3^2+1/4^2+1/5^2+...+1/50^2
Chung to rang a,A>1=4 b,A>4/9
Cho A=1/3^2+1/4^2+1/5^2+...+1/50^2
Chung to rang a,A>1=4 b,A>4/9
A=1/2+3/4+5/6+........+199/200
chung to rang A^2<1/200