cho \(x=\sqrt{3+2}\)
tính giá trị của BT
\(A=x^5-3x^4-3x^3+6x^2-20x+2018\)
Cho \(x=2-\sqrt{3}\). Tính giá trị biểu thức: \(B=x^5-3x^4-3x^3+6x^2-20x+2018\).
Ta có: \(x=2-\sqrt{3}\)\(\Rightarrow2-x=\sqrt{3}\)\(\Rightarrow\left(2-x\right)^2=3\)\(\Rightarrow4-4x+x^2=3\)\(\Rightarrow x^2-4x+1=0\)
Lại có: \(B=x^5-3x^4-3x^3+6x^2-20x+2018\)
\(\Rightarrow B=x^5-4x^4+x^4+x^3-4x^3+5x^2+x^2+20x+5+2013\)
\(\Rightarrow B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2013\)
\(\Rightarrow B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2013\)
\(\Rightarrow B=x^3\cdot0+x^2\cdot0+5\cdot0+2013=2013\)
Cho x+\(\sqrt{3}=2\)\(.Tính\) giá trị biểu thức H= \(x^5-3x^4-3x^3+6x^2-20x+2024\)ta được
\(\Leftrightarrow x=2-\sqrt{3}\)
Dễ thấy x là nghiệm của PT \(x^2-4x+1\)
\(H=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2019\\ H=\left(x^2-4x+1\right)\left(x^3+x^2+5\right)+2019\\ H=2019\)
Với x+√3=2
Tìm giá trị của B=x^5-3x^4-3x^3+6x^2+20x+2018
Cho \(x=\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)-\frac{2\sqrt{6}+\sqrt{3}}{\sqrt{8}+1}\)
Tính giá trị biểu thức \(A=x^5-3x^4-3x^3+6x^2-20x+2022\)
Các bạn gải chi tiết giúp mk nhé. Cảm ơn
a) Cho x=\(\frac{\sqrt{4+2\sqrt{3}}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}}-38-2}\). Tính P=\(\left(x^2-x-1\right)^{2016}\)
b) Cho \(x+\sqrt{3}=2\). Tính giá trị của biểu thức; B= \(x^5-3x^4-3x^3+6x^2-20x+2021\)
b) Ta có: \(x+\sqrt{3}=2\Leftrightarrow x-2=-\sqrt{3}\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow x^2-4x+1=0\)
\(B=x^5-3x^4-3x^3+6x^2-20x+2021\)
\(B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2016\)
\(B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2016\)
Thế \(x^2-4x+1=0\)\(\Rightarrow B=2016.\)
cho x+\(\sqrt{3}\) =2. Tính giá trị biểu thức B=x5-3x4-3x3+6x2-20x+2018
\(x+\sqrt{3}=2\Rightarrow\sqrt{3}=2-x\Rightarrow3=\left(2-x\right)^2\Rightarrow x^2-4x+1=0\)
Ta có:
\(B=x^5-4x^4+x^4-4x^3+x^3+5x^2+x^2-20x+5+2013\)
\(\Rightarrow B=x^5-4x^4+x^3+x^4-4x^3+x^2+5x^2-20x+5+2013\)
\(\Rightarrow B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2013\)
\(\Rightarrow B=x^3.0+x^2.0+5.0+2013=2013\)
cho \(x+\sqrt{3}=2\)
tinh B = x5-3x4-3x3+6x2-20x+2018
cho x^2-4x+1=0 tìm giá trị B= x^5-3x^4-3x^3+6x^2-20x+2025
Với giả thiết x2 - 4x + 1 = 0 thì\(B=x^5-3x^4-3x^3+6x^2-20x+2025=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2020=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2020=\left(x^3+x^2+5\right)\left(x^2-4x+1\right)+2020=2020\)
Thank you nhiều nha . Chúc bạn học tốt. I love you <3
Bạn có thể giải tiếp cho mình ko vậy
Cho: \(x+\sqrt{3}=2\)
Tính: \(P=x^5-3x^4-3x^3+6x^2-20x+2018\)
Giúp hộ đi ạ!!!
\(x+\sqrt{3}=2\Leftrightarrow x-2=-\sqrt{3}\Leftrightarrow\left(x-2\right)^2=3\)
\(\Leftrightarrow x^2-4x+1=0\)
ta có : \(P=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2013=2013\)