tính giá trị của biểu thức A=(2a-b)/(3a-b)+(5b-a)/(3a+b). biet 10a2-3b2+5ab=0
tính giá trị biểu thức (2a-b)/(3a-b)+(5b-a)/(3a+b)-3 biết 10a^2-3b^2-5ab=0 và 9a^2-b^2 khác 0
cho 10a2-3b2+5ab=0 và 9a2-b2 khác 0 tính giá trị biểu thức Q= \(\frac{2a-b}{3a-b}\)+ \(\frac{5b-a}{3a+b}\)
Cho 4a2 + b2 = 5ab với b > 2a > 0. Tính giá trị của biểu thức 5ab / 3a^2+2b^2
Ta có:
\(4a^2+b^2=5ab\Leftrightarrow4a^2+b^2-4ab-ab=0\)
\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\4a-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=b\left(ktm\right)\\4a=b\left(tm\right)\end{matrix}\right.\)
\(\Rightarrow4a=b\)
\(\Rightarrow\dfrac{5ab}{3a^2+2b^2}=\dfrac{5a.4a}{3a^2+2.\left(4a\right)^2}=\dfrac{20a^2}{3a^2+32a^2}\)
\(=\dfrac{20a^2}{35a^2}=\dfrac{4}{7}\)
\(4a^2+b^2=5ab\)
\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Rightarrow b=4a\left(do.a\ne b\right)\)
\(\dfrac{5ab}{3a^2+2b^2}=\dfrac{20a^2}{3a^2+32a^2}=\dfrac{4}{7}\)
TÌm giá trị biểu thức \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\) biết \(10a^2-3b^2+5ab=0\)và \(9a^2-b^2\ne0\)
\(B=\frac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{9a^2-b^2}=\frac{3a^2+15ab-6b^2}{9a^2-b^2}\)\(=\frac{3a^2+3\left(3b^2-10a^2\right)-6b^2}{9a^2-b^2}=\frac{-3\left(9a^2-b^2\right)}{9a^2-b^2}=-3\)
biết b khác cộng trừ 3a và 6a^2-15ab+5b^2=. tính giá trị biểu thức Q=\(\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)
Ta có
\(\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}=\frac{3a^2+15ab-6b^2}{9a^2-b^2}\left(1\right)\)
Ta lại có
\(6a^2-15ab+5b^2=0\)
\(\Leftrightarrow9a^2-b^2=3a^2+15ab-6b^2\left(2\right)\)
Từ (1) và (2) => Q = 1
cho a>b>0 và \(2\left(a^2+b^2\right)=5ab\)
Tính giá trị của biểu thức \(A=\frac{3a-b}{2a+b}\)
Bài này theo mình nên chọn phương án phân tích ĐTTNT từ điều kiện đầu tiên!
2a² + 2b² = 5ab
<=> 2a² - 5ab + 2b² = 0
<=> 2a² - 4ab - ab + 2b² = 0
<=> 2a(a - 2b) - b(a - 2b) = 0
<=> (a - 2b)(2a - b) = 0
<=> [a = 2b
.......[ a = b/2 (Loại vì a > b)
Thay a = 2b vào biểu thức ta có:
. .2b + b . . .. 3b
------------ = ---------- = 3
. .2b - b . . . . b
\(2\left(a^2+b^2\right)=5ab\)
\(\Leftrightarrow2a^2+2b^2-5ab=0\)
\(\Leftrightarrow\left(2a^2-4ab\right)-\left(ab-2b^2\right)=0\)
\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2b\\b=2a\end{cases}}\)
Lại có : a > b > 0
=> a = 2b
=> \(A=\frac{3a-b}{2a+b}=\frac{3.2b-b}{2.2b+b}=\frac{5b}{5b}=1\)
Vậy \(A=1\)
Tính giá trị của biểu thức: \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\) biết \(\hept{\begin{cases}10a^2-3b^2+ab=0\\b>a>0\end{cases}}\)
\(10a^2-b^2+ab=0\)
\(\Rightarrow10a^2+6ab-5ab-3b^2=0\)
\(\Rightarrow2a\left(5a+3b\right)-b\left(5a+3b\right)=0\)
\(\Rightarrow\left(5a+3b\right)\left(2a-b\right)=0\)
Mà \(b>a>0\Rightarrow5a+3b>0\)
Do đó: \(2a-b=0\Rightarrow2a=b\)
Ta có: \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)
\(=0+\frac{10a-a}{3a+2a}\) (vì b = 2a)
\(=0+\frac{9}{5}=\frac{9}{5}\)
Vậy \(A=\frac{9}{5}\)
Chúc bạn học tốt.
Cho a>b>0 và 2(a2+b2)=5ab. tính giá trị biểu thức \(P=\frac{3a-b}{2a+b}\)
Ta có : 2(a2 +b2) = 5ab <=> 2a2 - 5ab + 2b2 = 0 <=> 2a2 - 4ab - ab + 2b2 =0 <=> 2a(a - 2b) - b(a - 2b) =0
<=> (2a - b)(a - 2b) = 0 <=> a = 2b hay b = 2a
Vì a > b > 0 nên chỉ xảy ra trường hợp a = 2b. Do đó \(P=\frac{3.2b-b}{2.2b+b}=\frac{5b}{5b}=1\)