Cho 7x2+9y2+12xy-4x-6y-15=0
Tìm GTNN, GTLN P=x-2y+5
\(7x^2+9y^2+12xy-4x-6y-15=0\)
Tìm GTLN và GTNN của \(S=2x+3y+5\)
hướng dẫn thôi tự trình bày lại nhé
pt đầu bài \(\Leftrightarrow\)\(4x^2+9y^2+25+12xy+20x+30y=-3x^2+24x+36y+40\)
\(\Leftrightarrow\)\(\left(2x+3y+5\right)^2-12\left(2x+3y+5\right)+36=-3x^2+16\)
\(\Leftrightarrow\)\(\left(2x+3y-1\right)^2=-3x^2+16\le16\)
\(\Leftrightarrow\)\(-4\le2x+3y-1\le4\)\(\Leftrightarrow\)\(2\le2x+3y+5\le10\)
\(\Rightarrow\)\(\hept{\begin{cases}S_{min}=2\left(x=0;y=-1\right)\\S_{max}=10\left(x=0;y=\frac{5}{3}\right)\end{cases}}\)
Tìm GTLN,GTNN của bt
\(A=3x^2+2y^2+12xy-4x-6y-15=0\)
LN,NN của \(S=x+y\)
\(B=3x+y+2z=1\)
LN,NN của \(P=x^2+y^2+z^2\)
cho x,y thuộc R thỏa 9x^2 + 6y^2 - 12xy - 24x + 14y + 12 =0 tìm GTLN, GTNN của x,y
tìm x;y
a) 4x2+13y+12xy−18y−4x+104x2+13y+12xy−18y−4x+10
b) 4x2+12xy+9y2+4y2−18y−4x+104x2+12xy+9y2+4y2−18y−4x+10
c) (2x+3y)2−2(2x+3y)+1+4y2−12y+9(2x+3y)2−2(2x+3y)+1+4y2−12y+9
d) (2x+3y−1)+(2y−3)2=0
Bài 4:
a, Tìm GTLN
\(Q=-x^2-y^2+4x-4y+2\)
b, Tìm GTLN
\(A=-x^2-6x+5\)
\(B=-4x^2-9y^2-4x+6y+3\)
c, TÌm GTNN
\(P=x^2+y^2-2x+6y+12\)
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
Cho x,,y thỏa mãn 4x2+2y2-4xy+4x+8y+9=0
a Tìm y để x đạt GTNN,GTLN
b Tìm x,y để 2x-y đạt GTNN,GTLN
Tìm GTNN:
D= x^2 + 2y^2 - 2xy + 4x - 2y +15
E= 3x^2 + 14y^2 - 12xy + 6x - 8y + 10
Đưa một tỉ tao làm cho
tìm x,y
4x2-4x+9y2-6y+2=0
\(4x^2-4x+1+9y^2-6y+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(3y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\3y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Ta có:4x2-4x+9y2-6y+2=0
<=>(4x2-4x+1)+(9y2-6y+1)=0
<=> (2x-1)2+(3y-1)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\3y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Cho x và y thỏa mãn: x^2+2xy+6x+6y+2y^^2+8=0.
Tìm GTLN và GTNN của biểu thức E=x+y+2016