\(2011^{2011}.\left(7^{10}:7^8-3.2^4-2^{2011}:2^{2011}\right)\)
\(2011^{2011}.\left(7^{10}:7^8-3.2^4-2^{2011}:2^{2011}\right)\)
\(2011^{2011}.\left(7^{10}:7^8-3.2^4-2^{2011}:2^{2011}\right)\)
\(=2011^{2011}.\left(7^{10-8}-3.2^4-2^{2011-2011}\right)\)
\(=2011^{2011}.\left(7^2-3.2^4-2^0\right)\)
\(=2011^{2011}.\left(49-3.16-1\right)\)
\(=2011^{2011}.\left(49-48-1\right)\)
\(=2011^{2011}.\left(1-1\right)\)
\(=2011^{2011}.0\)
\(=0\)
\(A=\left\{\frac{1999}{2011}-\frac{2011}{1999}\right\}-\left\{\frac{-12}{1999}-\frac{12}{2011}\right\}\)
\(B=\frac{2}{5}+\left(\frac{3}{11}+\frac{-2}{5}\right)\)
\(C=\frac{-5}{7}.\frac{4}{13}+\frac{-5}{7}.\frac{9}{13}+\frac{-2}{7}\)
\(D=\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\left(\frac{-9}{2}\right)+\frac{1}{7}.\left(\frac{-9}{10}\right)\)
Hãy so sánh:
1- A=20112010+1/20112011+1 với B=20112011+1/20122012+1
2- B=-7/102011+-15/102012 với N=-15/102011+-8/102012
Chứng minh : A=\(\frac{\left(2009^2+6\cdot2009+8\right)\cdot\left(2011^2+4\cdot2009+11\right)}{\left(2009\cdot2016+10\right)\left(2010\cdot2008+7\cdot2009+13\right)}=1\)
Chứng minh rằng:
\(\dfrac{1}{3\left(\sqrt{2}+1\right)}+\dfrac{1}{5\left(\sqrt{3}+\sqrt{2}\right)}+\dfrac{1}{7\left(\sqrt{4}+\sqrt{3}\right)}+...+\dfrac{1}{4021\left(\sqrt{2011}+\sqrt{2010}\right)}< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{2011}}\right)\)
\(\dfrac{1}{\sqrt{k}+\sqrt{k+1}}=\dfrac{\sqrt{k}-\sqrt{k+1}}{k-k-1}=\sqrt{k+1}-\sqrt{k}\\ \Leftrightarrow\text{Đặt}\text{ }A=\dfrac{1}{3\left(\sqrt{2}+\sqrt{1}\right)}+\dfrac{1}{5\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{1}{4021\left(\sqrt{2011}+\sqrt{2010}\right)}< \dfrac{1}{2\left(\sqrt{2}+\sqrt{1}\right)}+\dfrac{1}{2\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{1}{2\left(\sqrt{2011}+\sqrt{2010}\right)}\\ \Leftrightarrow A< \dfrac{1}{2}\left(\dfrac{1}{\sqrt{2}+\sqrt{1}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{2011}+\sqrt{2010}}\right)\)
\(\Leftrightarrow A< \dfrac{1}{2}\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2011}-\sqrt{2010}\right)\\ \Leftrightarrow A< \dfrac{1}{2}\left(\sqrt{2011}-1\right)< \dfrac{1}{2}\cdot\dfrac{\sqrt{2011}-1}{\sqrt{2011}}=\dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{2011}}\right)\)
\(\left(x+\sqrt{\left(x^2+2011\right)}\right).\left(y+\sqrt{\left(y^2+2011\right)}\right)=2011\). Tính gía trị biểu thức:
A=\(y=\frac{x^{2011^{ }}+y^{2011}}{\left(x^{2011}+y^4+1\right)^{2011}}\)
b. Cho p,q là 2 số nguyên tố lớn hơn 3.Biets rằng p-q=2
Chứng minh: (p+q) chia hết cho 12
1 tinh
a,\(5\dfrac{4}{23}.27\dfrac{3}{47}+4\dfrac{3}{47}.\left(-5\dfrac{4}{23}\right)\)
b,4.\(\left(\dfrac{-1}{2}\right)^3+\dfrac{3}{2}\)
c,\(\left(\dfrac{1999}{2011}-\dfrac{2011}{1999}\right)-\left(\dfrac{-12}{1999}-\dfrac{12}{2011}\right)\)
d,\(\left(\dfrac{-5}{11}+\dfrac{7}{22}-\dfrac{-4}{33}-\dfrac{5}{44}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
a) \(5\dfrac{4}{23}.27\dfrac{3}{47}+4\dfrac{3}{47}.\left(-5\dfrac{4}{23}\right)\)
\(=5\dfrac{4}{23}.27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right).5\dfrac{4}{23}\)
\(=5\dfrac{4}{23}.\left[27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right)\right]\)
\(=5\dfrac{4}{23}.\left(27\dfrac{3}{47}-4\dfrac{3}{27}\right)\)
\(=5\dfrac{4}{23}.23\)
\(=\dfrac{119}{23}.23\)
\(=\dfrac{119}{23}\)
b) \(4.\left(\dfrac{-1}{2}\right)^3+\dfrac{3}{2}\)
\(=4.\dfrac{-1}{6}+\dfrac{3}{2}\)
\(=\dfrac{-4}{6}+\dfrac{3}{2}\)
\(=\dfrac{-2}{3}+\dfrac{3}{2}\)
\(=\dfrac{-4}{6}+\dfrac{9}{6}\)
\(=\dfrac{5}{6}\)
c) \(\left(\dfrac{1999}{2011}-\dfrac{2011}{1999}\right)-\left(\dfrac{-12}{1999}-\dfrac{12}{2011}\right)\)
\(=\dfrac{1999}{2011}-\dfrac{2011}{1999}-\dfrac{-12}{1999}+\dfrac{12}{2011}\)
\(=\left(\dfrac{1999}{2011}+\dfrac{12}{2011}\right)-\left(\dfrac{2011}{1999}+\dfrac{-12}{1999}\right)\)
\(=\dfrac{2011}{2011}-\dfrac{1999}{1999}\)
\(=1-1\)
\(=0\)
d) \(\left(\dfrac{-5}{11}+\dfrac{7}{22}-\dfrac{-4}{33}-\dfrac{5}{44}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
(đợi đã, mình chưa tìm được hướng làm...)
d) \(\left(\dfrac{-5}{11}+\dfrac{7}{22}-\dfrac{-4}{33}-\dfrac{5}{44}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
\(=\left(\dfrac{-60}{132}+\dfrac{42}{132}-\dfrac{-16}{132}-\dfrac{15}{132}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
\(=\dfrac{-17}{132}:\left(\dfrac{381}{22}-\dfrac{865}{22}\right)\)
\(=\dfrac{-17}{132}:\left(-22\right)\)
\(=\dfrac{-17}{132}.\dfrac{1}{-22}\)
\(=\dfrac{-17}{-2904}=\dfrac{17}{2904}\)
Cho a,b, t/m \(\left(\sqrt{a^2+2011}+a\right)\left(\sqrt{b^2+2011}+b\right)=2011\)
C/m \(\left(\sqrt{b^2+2011}+b\right)=\left(\sqrt{a^2+2011}-a\right)\)
Ta có : \(\left(\sqrt{a^2+2011}+a\right).\left(\sqrt{a^2+2011}-a\right)\)
\(=\left(\sqrt{a^2+2011}\right)^2-a^2\)
\(=a^2+2011-a^2=2011\)
Nên : \(\left(\sqrt{a^2+2011}+a\right).\left(\sqrt{a^2+2011}-a\right)=2011\)
Mà theo bài ta có : \(\left(\sqrt{a^2+2011}+a\right).\left(\sqrt{a^2+2011}+b\right)=2011\)
Nên : \(\sqrt{a^2+2011}+b=\sqrt{a^2+2011}-a\) ( đpcm )
Bài 1: Tính nhanh
\(\left(1-\frac{1}{7}\right)\times\left(1-\frac{1}{8}\right)\times\left(1-\frac{1}{9}\right)\times...\times\left(1-\frac{1}{2011}\right)\)
Bài 2:
So sánh\(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\)với 3
\(\left(1-\frac{1}{7}\right).\left(1-\frac{1}{8}\right).\left(1-\frac{1}{9}\right)......\left(1-\frac{1}{2011}\right)\)
\(=\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2010}{2011}\)
\(=\frac{6.7.8.9.....2010}{7.8.9.10.....2011}\)
\(=\frac{6}{2011}\)