100^99+2^3 chia het cho 18
CMR:1/3-2/32+3/33-4/34+...+99/399-100/3100 chia het cho 3/16
Câu hỏi của Phùng Tuệ Minh - Toán lớp 7 - Học toán với OnlineMath
Cho S=1 -3 + 3^2 - 3^3 + 3^4 -.....-3^99 + 3^100
a.C/m : 3^101 + 1 chia het cho 4
b.C/m : S chia het cho 4
Thằng chó Nguyễn Đăng Khoa
chung minh rang:S=2+2^2+2^3+....+2^99+2^100 chia het cho 31
Ta có: \(S=2+2^2+2^3+...+2^{99}+2^{100}\)
\(\Rightarrow S=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{94}+2^{95}+2^{96}+2^{97}+2^{99}\right)\)
\(\Rightarrow S=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)+...+2^{94}.\left(1+2+2^2+2^3+2^4\right)\)
\(\Rightarrow2.31+2^6.31+...+2^{94}.31\)
\(\Rightarrow S=31.\left(2+2^6+....+2^{94}\right)\) CHIA HẾT CHO 31 (đpcm)
Vậy S chia hết cho 31
Cho A = 1-2+3-4+5-6+....+99-100. Tong A co chia het cho 2 , 3 ,4 khong
\(A=1-2+3-4+5-6+...+99-100\)
\(\Rightarrow A=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(99-100\right)\) ( có 50 cặp )
\(\Rightarrow A=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
\(\Rightarrow A=\left(-1\right).50\)
\(\Rightarrow A=-50\)
=> A chia hết cho 2 .( Vì A có chữ số tận cùng chia hết cho 2 )
=> A không chia hết cho 3 ( Vì tổng các chữ số không chia hết cho 3 )
=> A không chia hết cho 4
chung minh rang
C=2+2^2+2^3+......+2^99+2^100 Chia het cho 31
C = 2 + 22 + 23 + ... + 299 + 2100
= (2 + 22 + 23 + 24 + 25) + ... + ( 296 + 297 + 298 + 299 + 2100)
= 62 + ... + 295.( 2 + 22 + 23 + 24 + 25)
= 62 + ... + 295 . 62
= 62 . (1 + 295) chia hết cho 31
kudo shinichi khong dua ra ket qua ro rang
tim cac chu so a,b biet: aabb chia het cho 99
tim cac chu so a,b biet aabb chia het cho 33
tim chu so a de :
b) B=100...0100...0a5 chia het cho 37
c) C=100...0100..0a2 chia het cho 27
chung minh neu p la so nguyen to thi
2.3.4. .... .(p-3).(p-2)-1 chia het cho p
chung minh rang :
s= 5+5^2+5^3+...........+5^99+5^100 chia het cho 30
S= 5+5^2+5^3+...........+5^99+5^100
=(5+52)+(53+54)+....+(599+5100)2
=1.(5+52)+(5.52+52.52)+...+(598.5+592.52)
=1.(5+52)+52.(5+52)+...+598.(5+52)
=1.30+52.30+...+598.30
=30.(1+52+...+598)
=>S chia het cho 30
chung minh rang s=2+22+23...+299+2100 chia het cho 31
S = 2 + 2 2 + 2 3 + ... + 2 99 + 2 100
S = ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) + ... + ( 2 96 + 2 97 + 2 98 + 2 99 + 2 100 )
S = ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) + ... + ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) . 2 95
S = 62 + ... + 62 . 2 96
S = 62 ( 1 + ... + 2 96 )
Vì 62 chia hết cho 31
=> 62 ( 1 + ... + 2 96 ) chia hết cho 31
=> S chia hết cho 31
Chung to rang 31 +32+......+399+3100 chia het cho 4
\(3^1+3^2+...+3^{99}+3^{100}\)
= \(\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
= \(3^1.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{99}.\left(1+3\right)\)
= \(3^1.4+3^3.4+...+3^{99}.4\)
= \(4.\left(3^1+3^3+...+3^{99}\right)\) chia hết cho 4
Nên \(3^1+3^2+...+3^{99}+3^{100}\) chia hết cho 4
C=3(1+3+9+27)+....+3^97(1+3+9+27)
C=3.40+...+3^97.40
C=40(3+...+3^97) chia hết cho 40
=> C chia hết cho 40(ĐPCM)