Cho \(abc\ne0v\text{à}\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính \(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 1 : Cho \(a+b+c=2007\)và\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\)
Tính \(S=\frac{a}{b+C}+\frac{b}{c+a}+\frac{c}{a+b}\)
Bài 2 : Cho \(abc\ne0v\text{à}\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính \(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 3 : Cho \(a+b+c\ne0\)
Thoả mãn : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)Tính \(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
cái này chắc k ai làm đâu. mệt lắm
\(Cho:\frac{a}{b}=\frac{c}{d}\left(a,b,c\ne0v\text{à}a\ne b;c\ne d\right)\)
\(CMR:\)\(\frac{a}{a-b}=\frac{c}{c-d}\)
a) So sánh các số a,b,c biết
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\left(a,b,c\ne0\right)\)
b) Chứng minh rằng nếu
\(a^2=bc\left(v\text{ới a\ne}b,a,c\ne0v\text{à a\ne}+-c\right)th\text{ì}\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Chỗ a/ne là dấu khác nha
theo tinh chat cua day ti so bang nhau ta co:
a/b=b/c=c/a =a+b+c/b+c+a=1
suy ra: a/b=1
b/c=1
c/a=1
vay a=b=c=
Bài 1. Cho a+b+c=0. Đặt P=\(\frac{a-b}{b}+\frac{b-c}{a}+\frac{c-a}{b}\); Q=\(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\).Tính P.Q
b) Rút gọn rồi tính giá trị biểu thức E=\(\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}+\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}+\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\)biết \(1-\frac{x^2}{abc}=0\)
CHO TAM GIÁC ABC, ĐẶT ĐỘ DÀI 3 CẠNH BC=a, CA=b, AB=c
CHO BIẾT: \(\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b}=\frac{ca}{b+c}+\frac{ab}{c+a}+\frac{bc}{a+b}\)
A) CM TAM GIÁC ABC CÂN
B) NẾU CHO THÊM: \(c^4+abc\left(a+b\right)=c^2\left(a^2+b^2\right)+\left(c+b\right)\left(c-b\right)bc+\left(c-a\right)\left(c+a\right)ac\) .TÍNH CÁC GÓC CỦA TAM GIÁC ABC
Cho 3 sô dương a,b,c . Chứng mình rằng
\(\sqrt[3]{\frac{\left(a\text{+}b\right)\left(b\text{+}c\right)\left(c\text{+}a\right)}{abc}}\ge\frac{4}{3}\left(\frac{a^2}{a^2\text{+}bc}\frac{b^2}{b^2\text{+}ab}\frac{c^2}{c^2\text{+}ac}\right)\)
Mấy bạn giúp mình câu này với ;-;
Cho a,b,c dương và abc=1
CMR: \(\frac{a^4}{2\left(b+c\right)^2}+\frac{b^4}{2\left(a+c\right)^2}+\frac{c^4}{2\left(a+b\right)^2}+\frac{1}{c^2\left(a+c\right)\left(a+b\right)}+\frac{1}{b^2\left(a+b\right)\left(b+c\right)}+\frac{1}{a^2\left(a+c\right)\left(a+b\right)}\ge\frac{1}{8}\)
Cho abc\(\ne\)0 sao cho\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{-a+b+c}{a}\)Tính M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b+c}{a+b+c}=1\)
Vậy thì \(\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)
Thay vào biểu thức M ta có:
\(M=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8.\)
Vậy M = 8.
cho a,b,c>0
Cm: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}=\frac{c^2}{c^2(a+b)}+\frac{a^2}{a^2(b+c)}+\frac{b^2}{b^2(c+a)}+\frac{(\sqrt[3]{abc})^2}{2abc}\)
\(\geq \frac{(c+a+b+\sqrt[3]{abc})^2}{c^2(a+b)+a^2(b+c)+b^2(c+a)+2abc}=\frac{(a+b+c+\sqrt[3]{abc})^2}{(a+b)(b+c)(c+a)}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c$