A=1+1/1.2+1+1/1.2.3+.......+1/1.2.3.n < 1+1/1.2+1/2.3+.......+1/k(k+1)
A= 1+1/1.2 + 1/1.2.3 +......+1/1.2.3.n <1+1/1.2 +1/1.3+......+1/k(k+1)
DẠNG 2: DÃY SỐ MÀ CÁC SỐ HẠNG KHÔNG CÁCH ĐỀU.
Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
Hướng dẫn giải
Cách 1:
Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhiên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1= 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2= 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng từng vế của các đẳng thức trên ta có:
3(a1 + a2 + … + an) = n(n + 1)(n + 2)
3(a1 + a2 + ... + an) = n(n + 1)(n + 2) ⇒
Cách 2: Ta có
3A = 1.2.3 + 2.3.3 + … + n(n + 1).3
3A = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)]
3A = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1)
3A = n(n + 1)(n + 2)
* Tổng quát hoá ta có:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …
Ta dễ dàng chứng minh công thức trên như sau:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)
Bài 2. Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
Hướng dẫn giải
Áp dụng tính kế thừa của bài 1 ta có:
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
4B = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]
4B = (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)
Bài 3. Tính C = 1.4 + 2.5 + 3.6 + 4.7 + … + n(n + 3)
Hướng dẫn giải
Ta thấy: 1.4 = 1.(1 + 3)
2.5 = 2.(2 + 3)
3.6 = 3.(3 + 3)
4.7 = 4.(4 + 3)
…….
n(n + 3) = n(n + 1) + 2n
Vậy C = 1.2 + 2.1 + 2.3 + 2.2 + 3.4 + 2.3 + … + n(n + 1) +2n
C = 1.2 + 2 +2.3 + 4 + 3.4 + 6 + … + n(n + 1) + 2n
C = [1.2 +2.3 +3.4 + … + n(n + 1)] + (2 + 4 + 6 + … + 2n)
⇒ 3C = 3.[1.2 +2.3 +3.4 + … + n(n + 1)] + 3.(2 + 4 + 6 + … + 2n)
3C = 1.2.3 + 2.3.3 + 3.4.3 + … + n(n + 1).3 + 3.(2 + 4 + 6 + … + 2n)
3C = n(n + 1)(n + 2) +
⇒ C = + =
Bài 4: Tính D = 12 + 22 + 32 + .... + n2
Hướng dẫn giải
Nhận xét: Các số hạng của bài 1 là tích của hai số tự nhiên liên tiếp, còn ở bài này là tích của hai số tự nhiên giống nhau. Do đó ta chuyển về dạng bài tập 1:
Ta có:
A = 1.2 + 2.3 + 3.4 + ...+ n(n + 1)
A = 1.(1 + 1) + 2.(1 + 2) + 3.(1 + 3) + .... + n.(n + 1)
A = 12 + 1.1 + 22 + .1 + 32 + 3.1 + ... + n2 + n.1
A = (12 + 22 + 32 + .... + n2) + (1 + 2 + 3 + ... + n)
Mặt khác theo bài tập 1 ta có:
và 1 + 2 + 3 + .... + n =
⇒D = 12 + 22 + 32 + .... + n2 =
Bài 5: Tính E = 13 + 23 + 33 + ... + n3
Hướng dẫn giải
Tương tự bài toán ở trên, xuất phát từ bài toán 2, ta đưa tổng B về tổng E:
B = 1.2.3 + 2.3.4 + 4.5.6 + ... + (n - 1)n(n + 1)
B = (2 - 1).2.(2 + 1) + (3 -1).3.(3 +1) + ....+ (n - 1).n.(n + 1)
B = (23 - 2) + (33 - 3) + .... + (n3 - n)
B = (23 + 33 + .... +n3) - (2 + 3 + ... + n)
B = (13 + 23 + 33 + ... + n3) - (1 + 2 + 3 + ... + n)
B = (13 + 23 + 33 + ... + n3) -
⇒ 13 + 23 + 33 + ... + n3 = B +
Mà
⇒ E = 13 + 23 + 33 + ... + n3 = +
mình thấy bài bạn có đáp án hết rồi mà?
A =1+1/1.2.3+1/2.3.4+...+1/98.99.100 . Biết 8A = 1/k .(1/1.2-1/99.100)tìm k
tính các tổng sau:
A=1.2+2.3+3.4+...+n(n+1)
B=1.2.3+2.3.4+...+n(n+1)(n+2)
C=1.2+3.4+5.6+...+2017.2018
D=1.4+2.5+3.6+...+n(n+3)
Giúp mk nha, ai nhanh mk k!
1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>S
Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên.
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.
2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1)
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4
ghi dọc cho dễ nhìn:
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1)
ad cho k chạy từ 2 đến n ta có:
1.2.3.4 = 1.2.3.4
2.3.4.4 = 2.3.4.5 - 1.2.3.4
3.4.5.4 = 3.4.5.6 - 2.3.4.5
...
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn)
4S = (n-1)n(n+1)(n+2)
3.
1/1.2.3+1/2.3.4+...+1/98.99.100=k.(1/1.2-1/99.100)
1/1.2.3+1/2.3.4+1/3.4.5+...+1/98.99.100=1/k.(1/1.2-1/99.100)
Vậy k=...
Tính tổng : 1.2 + 2.3 + 3.4 + …..+ n.(n+1)
1.2.3+ 2.3.4 + 3.4.5 + ….+ n(n+1)(n+2)
https://olm.vn/hoi-dap/tim-kiem?q=t%C3%ADnh+t%E1%BB%95ng+sau+:S+=+1.2.3+2.3.4+3.4.5+...+n.(n+1).(n+2)+&id=601088
bài 1 .Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
bài 2 . Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
Bài 1:
\(A=1.2+2.3+3.4+...+n.\left(n+1\right)\)
\(3A=1.2.3+2.3.3+3.4.3+...+n.\left(n+1\right).3\)
\(=1.2\left(3-0\right)+2.3\left(4-1\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]\)
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
\(=n.\left(n+1\right).\left(n+2\right)\)
\(\Leftrightarrow A=\frac{\left[n.\left(n+1\right).\left(n+2\right)\right]}{3}\)
3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>A=[n.(n+1).(n+2)] /3
A = 1.2 + 2.3 + 3.4 + ... + n(n + 1)
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + n.(n+1).3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + n.(n + 1)[(n+2)-(n-1)]
3A = 1.2.3 +2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + (n-1)n(n+1) + n(n+1)(n+2)
3A = n(n+1)(n+2)
A = n(n+1)(n+2)
bài 2 làm tương tự nhưng là 4B nha cậu
1/1.2.3+1/2.3.4+1/3.4.5+...+1/98.99.100=1/k.(1/1.2-1/99.100)
Số k trong đẳng thức trên là?