Cho tam giác ABC đều. M \(\in\) BC. E; F lần lượt vuông góc vs AB; AC. Gọi I; D là trung điểm của AM; BC.
a) Tính góc DIE; DIF
b) C/m: DEIF là hình thoi.
1.cho tam giác ABC có BC=2AB. M là trung điểm của BC, D là trung điểm của BM.TRên tia AD lấy điểm E sao cho AE=2AD. C/m: a, tam giác MAE=tam giác MAC b, AC=2AD
2.cho tam giác ABC đều. D thuộc BC sao cho BC=3BD.Vẽ DE vuông góc với BC(E thuộc AB) DF vuông góc với AC( F thuộc AC). C/m tam giác DEF đều.
3. Cho tam giác ABC cân tại A.D thuộc AB. E thuộc AC sao cho AD=AE. O là giao điểm của BE và CD. C/m
a,BE=CD b, DE song song với BC
bai tinh chat tia phan giac cua mot goc
cho tam giác ABC đều. D thuộc BC sao cho BC=3BD.Vẽ DE vuông góc với BC(E thuộc AB), DF vuông góc với AC( F thuộc AC). C/m tam giác DEF đều.
1 ) Cho tam giác ABC. Vẽ các Tam giác đều ABM và ACN ra phía ngoài tam giác ABC. Gọi D ; E ; F lần lượt là trung điểm của BC ; AM ; AN
Chứng minh : Tam giác DEF đều
2) Cho tam giác ABC và M tùy ý trong tam giác. Gọi D ; E ; F thứ tự trung điểm BC ; CA ; AB. Gọi H ; I ; K thứ tự là điểm đối xứng của M qua D ; E ; F
Chứng minh : AH ; BI ; CK đồng quy tại 1 điểm.
Em tham khảo bài 2 tại link dưới đây nhé.
Câu hỏi của Nguyễn Chí Thành - Toán lớp 8 - Học toán với OnlineMath
Cho tam giác đều ABC .Trên AB,BC,CA lấy ba điểm M,N,E sao cho AM=BN=CE . CHỨNG MINH TAM GIÁC MNE DEU
Cho tam giác ABC đều. Lấy M thuộc AB, N thuộc AC, E thuộc BC sao cho AM=CN=BE. Chứng minh tam giác MNE đều.
Helpppppppp meeeeeeeee!!!!!
tự kẻ hình :
có tam giác ABC đều (gt)
=> góc A = góc B = góc C (đn) (1)
AB = AC = BC
AB = BM + MA
AC = AN + NC
BC = BE + CE
mà BE = CN = AM (gt) (2)
=> BM = AN = CE (3)
(1)(2)(3) => tam giác AMN = tam giác CNE = tam giác BEM (c - g - c)
=> MN = NE = EM
=> tam giác MEN đều
Cho tam giác ABC vuông tại A có góc C=30 độ. Vẽ đường phân giác góc B cắt AC tại M. Từ M kẻ ME vuông góc BC (E Thuộc BC)
a. Chứng minh tam giác ABM= tam giác EBM
b. Chứng Minh tam giác ABE là tam giác đều
a/ Xét tam giác ABM và tam giác EBM:
+ ^A = ^AEB ( = 90o)
+ BM chung
+ ^ABM = ^EBM ( do BM là phân giác ^B)
=> Tam giác ABM = Tam giác EBM (ch - gn)
b/ Ta có: ^A = ^B + ^C = 90o (do tam giác ABC vuông tại A)
Mà ^C = 30o (gt)
=> ^B = 60o
Tam giác ABM = Tam giác EBM (cmt)
=> AB = EB (cặp cạnh tương ứng)
=> Tam giác ABE cân tại B
Lại có: ^B = 60o (cmt)
=> Tam giác ABE đều
Câu 1 : Cho tam giác ABC đều . Kẻ \(AH\perp BC\left(H\in BC\right)\). TIa phân giác của góc ACB cắt AH tại E . Vẽ \(EK\perp AC\left(K\in AC\right)\). Lấy I là trung điểm của AB . CMR :
a) tam giác EHC = tam giác EKC
b) tam giác CHK đều
c) tam giác AKH cân
d) Ba điểm C,E,I thẳng hàng
Câu 1 : Cho tam giác ABC đều . Kẻ \(AH\perp BC\left(H\in BC\right)\). TIa phân giác của góc ACB cắt AH tại E . Vẽ \(EK\perp AC\left(K\in AC\right)\). Lấy I là trung điểm của AB . CMR :
a) tam giác EHC = tam giác EKC
b) tam giác CHK đều
c) tam giác AKH cân
d) Ba điểm C,E,I thẳng hàng
cho tam giác ABC cân ở A, BC=2a
M là trung điểm của BC, D thuộc BC, E thuộc AC sao cho góc DME=góc ABC
a, CMR BD.CE ko đổi
b, DM là phân giác góc BDE
c,nếu tam giác ABC đều cạnh =2a tính chu vi tam giác ADE
Cho tam giác ABC đều,M thuộc AB. Vẽ ME//BC, MF//AC(E thuộc AC,F thuộc BC). Xác định M để EF min
Gọi \(H,K\) lần lượt là hình chiếu vuông góc của \(E,F\) lên \(BC.\) Vì tam giác \(ABC\) đều và \(ME\parallel BC,MF\parallel CA\to\Delta AEM,\Delta MFB\) đều. Do đó \(H,K\) là trung điểm của \(MA,MB.\) Suy ra \(HK=\frac{1}{2}AB.\)
Xét hình thang vuông \(HEFK\) có \(EF\ge HK=\frac{1}{2}AB.\) Dấu bằng xảy ra khi và chỉ khi \(EF\parallel AB.\) Khi đó \(\Delta CEF\) đều nên \(MECF\) là hình thoi. Đặc biệt ta có \(MC\perp EF\to MC\perp AB\to M\) là trung điểm \(AB.\)
Vậy giá trị bé nhất của \(EF\) là \(\frac{1}{2}AB\), đạt được khi và chỉ khi \(M\) là trung điểm \(AB.\)