Cho a thuộc N, không là số chính phương. Chứng minh rằng : căn bậc hai của a là số vô tỉ
Giả sử √aa là số hữu tỉ .
Đặt √a=pqa=pq (p; q ∈∈ N; q khác 0 và (p;q) = 1)
=> a=p2q2a=p2q2 => a.q2 = p2
Vì p2 là số chính phương nên a.q2 viết được dưới dạng tích của các số với lũy thừa bằng 2
Mà p; q nguyên tố cùng nhau nên a viết được dưới dạng lũy thừa bằng 2 => a là số chính phương (trái với giả thiết)
=> Điều giả sử sai
Vậy √aa là số vô tỉ
Cmr
a. căn bậc hai của 15 là số vô tỉ
b. Nếu số tự nhiên a ko là số chính phương thì căn bậc hai của a là số vô tỉ
Chứng minh rằng nếu số tự nhiên a không phải là số chính phương thì căn a là số vô tỉ
Do n không chính phương nên trong phân tích ra thừa số nguyên tố của n có ít nhất một thừa số p với số mũ lẻ, viết n=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k.
Vậy Căn (n) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ.
Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2
=> p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2.
Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn)
Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ.
Trả lời:
+ Giả sử \(\sqrt{a}\notin I\)
\(\Rightarrow\sqrt{a}\inℚ\)
\(\Rightarrow a=\frac{m}{n}\)với\(\left(m,n\right)=1;m,n\inℕ\)
+ Vì a không là số chính phương
\(\Rightarrow\sqrt{a}\notinℕ\)
\(\Rightarrow\frac{m}{n}\notinℕ\)
\(\Rightarrow n>1\)
+ Vì \(\sqrt{a}=\frac{m}{n}\)
\(\Rightarrow a=\frac{m^2}{n^2}\)
\(\Rightarrow m^2=an^2\)
+ Vì \(n>1\)
\(\Rightarrow\)Giả sử n có ước nguyên tố là p
Mà\(n\inℕ\)
Mà\(m^2=an^2\)
\(\Rightarrow m⋮p\)
\(\Rightarrow\)m,n có ƯC là p (Trái với giả thiết (m,n) = 1)
\(\Rightarrow\)Giả sử \(\sqrt{a}\notin I\)sai
\(\Rightarrow\sqrt{a}\in I\)
Vậy nếu số tự nhiên a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ.
Hok tốt!
Good girl
chứng minh rằng nếu số tự nhiên a không là số chính phương thì căn a vô tỉ
giả sử \(\sqrt{a}\) là số hữu tỉ
\(\sqrt{a}=\frac{m}{n}\) (m, n thuộc N*); (m,n) = 1
do a không phải scp nên \(\frac{m}{n}\)không phải stn
do đó n > 1
ta có: m2 = a.n2
gọi p là ước nguyên tố nào đó của n
thì m2 chia hết cho p, do đó m chia hết cho p
như vậy p là ước số nguyên tố của m, n, trái với (m, n) = 1
=> \(\sqrt{a}\)là số vô tỉ
Trả lời:
+ Giả sử \(\sqrt{a}\notin I\)
\(\Rightarrow\sqrt{a}\inℚ\)
\(\Rightarrow a=\frac{m}{n}\)với\(\left(m,n\right)=1;m,n\inℕ\)
+ Vì a không là số chính phương
\(\Rightarrow\sqrt{a}\notinℕ\)
\(\Rightarrow\frac{m}{n}\notinℕ\)
\(\Rightarrow n>1\)
+ Vì \(\sqrt{a}=\frac{m}{n}\)
\(\Rightarrow a=\frac{m^2}{n^2}\)
\(\Rightarrow m^2=an^2\)
+ Vì \(n>1\)
\(\Rightarrow\)Giả sử n có ước nguyên tố là p
Mà\(n\inℕ\)
Mà\(m^2=an^2\)
\(\Rightarrow m⋮p\)
\(\Rightarrow\)m,n có ƯC là p (Trái với giả thiết (m,n) = 1)
\(\Rightarrow\)Giả sử \(\sqrt{a}\notin I\)sai
\(\Rightarrow\sqrt{a}\in I\)
Vậy nếu số tự nhiên a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ.
Hok tốt!
Good girl
Chứng minh rằng nếu số nguyên dương n không phải là một số chính phương thì căn n là một số vô tỉ.?
Do n không chính phương nên trong phân tích ra thừa số nguyên tố của n có ít nhất một thừa số p với số mũ lẻ, viết n=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k.
Vậy Căn (n) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ.
Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2
=> p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2.
Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn)
Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ.
Tham khảo nè bác :)
Câu hỏi của Đỗ Văn Hoài Tuân - Toán lớp 7 - Học toán với OnlineMath
Do n không chính phương nên trong phân tích ra thừa số nguyên tố của n có ít nhất một thừa số p với số mũ lẻ, viết n=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k.
Vậy Căn (n) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ.
Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2 => p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2.
Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn) Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ
(đ.p.c.m)
=>căn n =a/b(b khác 0)(số hữu tỉ có thể biểu diễn như vậy)
<=> n=a^2/b^2
<=>a^2=b*c^2
mà a^2 và b^2 là hai số chính phương
=> n là số chính phương
=> trái giả thiết => giả sứ sai
=>a ko phải là số chính phương => căn a là số vô tỉ
Chứng minh √7 là số vô tỉ.
Chứng minh rằng: Nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.
Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không?
Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.
Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)
Chứng minh rằng: căn bậc hai của 10 là số vô tỉ.
chứng minh rằng căn bậc hai của 5 là số vô tỉ
Từ mâu thuẫn trên suy ra: thừa nhận là một số hữu tỉ là sai và phải kết luận là số vô tỉ.
Cách chứng minh trên có thể được tổng quát hóa để chứng rằng: "căn bậc hai của một số tự nhiên bất kì hoặc là một số nguyên hoặc là một số vô tỉ."
Từ mâu thuẫn trên suy ra: thừa nhận là một số hữu tỉ là sai và phải kết luận là số vô tỉ.
Cách chứng minh trên có thể được tổng quát hóa để chứng rằng: "căn bậc hai của một số tự nhiên bất kì hoặc là một số nguyên hoặc là một số vô tỉ."
tích mik nha
Cho tam giác ABC vuông tại A,đường cao AH.Gọi E,F lần lượt là trung điểm AHvà BH,CE cắt AF tại I. Chứng minh AF vuông góc với CE
Chứng minh rằng: căn bậc hai của 10 là số vô tỉ.
Giả sử \(\sqrt{10}\)là số hữu tỉ \(\Rightarrow\sqrt{10}=\frac{a}{b}\) ( vs \(\frac{a}{b}\)là phân số tối giản, \(a,b\in Z;b\ne0\))
Ta có \(\frac{a}{b}=\sqrt{10}\Rightarrow\left(\frac{a}{b}\right)^2=10\Rightarrow\frac{a^2}{b^2}=10\Rightarrow a^2=10b^2\)
=> \(a^2\) là số chẵn ( vì 10 là số chẵn)
\(\Rightarrow a\) chẵn ( do căn bậc hai của 1 số chẵn là số chẵn) (1)
\(\Rightarrow a=2k\left(k\in Z\right)\)
Thay a = 2k vào \(a^2=10b^2\) ta có
\(\left(2k\right)^2=10b^2\)
\(\Rightarrow4k^2=10b^2\)
\(\Rightarrow2k^2=5b^2\)
\(\Rightarrow5b^2\) là số chẵn
\(\Rightarrow b^2\) là số chẵn
\(\Rightarrow b\) chẵn ( do do căn bậc hai của 1 số chẵn là số chẵn ) (2)
Từ (1) và (2) => Phân số \(\frac{a}{b}\) chưa tối giản vs giả thiết đưa ra
Vậy \(\sqrt{10}\) là số vô tỉ
Có j sai sót mong bỏ qua
~ HAPPY NEW YEAR ~