Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hiền nguyễn thị thúy
Xem chi tiết
alibaba nguyễn
26 tháng 9 2016 lúc 7:04

Ta có 1 + x2 = xy + yz + xz + x2 = (xy + x2) + (yz + xz) = (x + y)(x + z)

=> \(1x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}=\:x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=\:x\left|y+z\right|\)

alibaba nguyễn
26 tháng 9 2016 lúc 7:06

Tương tự như vậy thì ta có 

A = xy + xz + yx + yz + zx + zy = 2

Thắng Nguyễn
26 tháng 9 2016 lúc 12:18

đây nhé Xem câu hỏi

Baek Hyun
Xem chi tiết
Thanh Tùng DZ
29 tháng 5 2019 lúc 11:03

https://diendantoanhoc.net/topic/167390-cmr-sum-fracx3y38geq-frac19frac227xyyzzx/ 

bạn tham khảo nhé

dam thu a
Xem chi tiết
Akai Haruma
24 tháng 2 2020 lúc 15:58

Lời giải:

Đặt biểu thức vế trái là $A$

Áp dụng BĐT Bunhiacopxky:

\(A[x(yz+zt+ty)+y(xz+zt+xt)+z(xt+yt+xy)+t(xy+yz+xz)]\geq \left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)^2\)
Vì $xyzt=1$ nên:

\(x(yz+zt+ty)+y(xz+zt+xt)+z(xt+yt+xy)+t(xy+yz+xz)=\frac{1}{t}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{x}+\frac{1}{z}+\frac{1}{y}+\frac{1}{x}+\frac{1}{t}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}=3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\)

Do đó:

$A. 3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\geq \left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)^2$

$\Rightarrow A\geq \frac{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}}{3}$

Áp dụng BĐT AM-GM: \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\geq 4\sqrt[4]{\frac{1}{xyzt}}=4$

Vậy $A\geq \frac{4}{3}$ (đpcm)

Khách vãng lai đã xóa
Lyzimi
Xem chi tiết
Thắng Nguyễn
27 tháng 8 2017 lúc 9:35

Từ \(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\) thì có

\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(a+1\right)\left(c+1\right)}+\frac{a^3}{\left(b+1\right)\left(c+1\right)}\ge\frac{1}{16}\)\(\forall\hept{\begin{cases}a+b+c=1\\a,b,c>0\end{cases}}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{64}+\frac{c+1}{64}\ge\frac{3a}{16}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế

\(VT+\frac{2\left(a+b+c+3\right)}{64}\ge\frac{3\left(a+b+c\right)}{16}\Leftrightarrow VT\ge\frac{1}{16}\)

Khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=1\)

BaBie
24 tháng 8 2017 lúc 15:12

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Lyzimi
24 tháng 8 2017 lúc 16:10

BaBie làm cái chi đây 

trần xuân quyến
Xem chi tiết
Nghĩa Nguyễn Văn
17 tháng 2 2019 lúc 21:27

Đk: $x\geq \frac{1}{2}$

Pt $\Leftrightarrow 4x^2+3x-7=4(\sqrt{x^3+3x^2}-2)+2(\sqrt{2x-1}-1)$

$\Leftrightarrow +4\frac{(x-1)(x+2)^2}{\sqrt{x^3+3x^2}+2}+4\frac{x-1}{\sqrt{2x-1}+1}-(x-1)(4x+7)=0$

$\Leftrightarrow (x-1)[\frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-(4x+7)]=0$

$\Leftrightarrow x=1\vee \frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-4x-7=0$ $(*)$

Xét hàm số $f(x)=\frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-4x-7,x\in [\frac{1}{2};+\infty )$ thì $f(x)>0,\forall x\in [\frac{1}{2};+\infty )$

$\Rightarrow $ Pt $(*)$ vô nghiệm

Kha Mai
Xem chi tiết
IS
13 tháng 4 2020 lúc 9:41

Áp dung BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)

\(=>x,y,z>0\left(taco\right)\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+xz}\)

\(=>P\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+xz}\)

\(=>P\ge\left(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}\right)+\frac{7}{xy+yz+xz}\)

\(\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{7}{xy+yz+zx}\)

\(=\frac{9}{\left(x+y+z\right)^2}+\frac{7}{xy+yz+xz}\ge\frac{9}{\left(x+y+z\right)^2}+\frac{21}{\left(x+y+z\right)^2}\ge30\)

do \(3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2and\left(x+y+z=1\right)\)

dấu = xảy ra khi x=y=z=1/3

zậy...........

Khách vãng lai đã xóa
Cầm Dương
Xem chi tiết
Lê Chí Công
13 tháng 6 2017 lúc 16:49

\(\frac{1}{\sqrt{xy}}\)<=  {\(\frac{1}{x}\)+\(\frac{1}{y}\)}  : 2 

Tương tư.....

=> DPCM

Hiếu Trần
Xem chi tiết
Kiệt Nguyễn
14 tháng 4 2020 lúc 17:35

Bất đẳng thức bị ngược dấu rồi!

Ta có: \(x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(z+x\right)\)

Tương tự ta có: \(y+zx=\left(x+y\right)\left(y+z\right);z+xy=\left(y+z\right)\left(z+x\right)\)

Áp dụng BĐT Côsi cho hai số dương ta có:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\)

\(\Rightarrow\text{Σ}_{cyc}\frac{x}{x+yz}=\frac{\text{Σ}_{cyc}\left[x\left(y+z\right)\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{2\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=2+\frac{2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\le2+\frac{2xyz}{8xyz}=2+\frac{1}{4}=\frac{9}{4}\)

Đẳng thức xảy ra\(\Leftrightarrow x=y=z=\frac{1}{3}\)

Khách vãng lai đã xóa
Ngọc Ánh Trương
5 tháng 10 2018 lúc 23:27

Vào câu trả lời tương tự đi

Easylove
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2020 lúc 14:53

\(VT=\sum\frac{x}{x\left(x+y+z\right)+yz}=\sum\frac{x}{\left(x+y\right)\left(x+z\right)}=\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(VT=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(VT=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y+z\right)\left(xy+yz+zx\right)-xyz}=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)+\frac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)-xyz}\)

\(VT\le\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)+\frac{1}{9}3\sqrt[3]{xyz}.3\sqrt[3]{x^2y^2z^2}-xyz}\)

\(VT\le\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)+xyz-xyz}=\frac{9}{4}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

Khách vãng lai đã xóa