Hình thang cân ABCD có đường chéo DB vuông góc với BC, DB là tia phân giác của góc D. Tính chu vi hình thang biết BC=3cm
Hình thang cân ABCD có đường chéo DB vuông góc với cạnh bên BC, DB là tia phân giác của góc D. Tính chu vi của hình thang, biết BC= 3cm.
hình thang ABCD
=> AD=BC = 3cm ( định lí 1 )
AB//CD ( ABCD là hình thang cân )
=> góc B1 = góc D2 ( SLT )
góc D1 = góc D2 ( gt )
=> góc B1 = góc D1
=> tg ABD cân tại A
=> AD=AB= 3cm
tg DBC vuông ở B
hình thang cân ABCD
=> góc D = góc C
2 lần góc D1 = góc C
=> góc DBC = góc D1 + 2 lần góc D1 = 90 độ
3 lần góc D1 = 90 độ
=> góc D1 = 900 : 3
= 300
=> góc C = 900 - góc D1 = 900 - 300 = 600
Gọi DA giao CB tại O
tg ODC có DB là pgiác
BD vuông góc với Oc
=> tg ODC cân ở D
lại có góc C = 60 độ
=> tg OCD đều
=> CD = CO
mà tg ODC đều nên DB là đường phân giác đồng thời là đường trung tuyến
=> OB= BC
CD= CO = OB+BC
mà OB = BC ( cmt )
=> CĐ= CƠ = 2CB = 2.3 = 6 ( cm )
Chu vi của hình thang cân ABCD là
AB+BC+AD+CD = 3+3+3+6= 15 (cm )
Hình thang cân ABCD có đường chéo DB vuông góc với cạnh bên BC, DB là tia phân giác của góc D. Tính chu vi của hình thang, biết BC= 3cm.
hình thang ABCD
=> AD=BC = 3cm ( định lí 1 )
AB//CD ( ABCD là hình thang cân )
=> góc B1 = góc D2 ( SLT )
góc D1 = góc D2 ( gt )
=> góc B1 = góc D1
=> tg ABD cân tại A
=> AD=AB= 3cm
tg DBC vuông ở B
hình thang cân ABCD
=> góc D = góc C
2 lần góc D1 = góc C
=> góc DBC = góc D1 + 2 lần góc D1 = 90 độ
3 lần góc D1 = 90 độ
=> góc D1 = 900 : 3
= 300
=> góc C = 900 - góc D1 = 900 - 300 = 600
Gọi DA giao CB tại O
tg ODC có DB là pgiác
BD vuông góc với Oc
=> tg ODC cân ở D
lại có góc C = 60 độ
=> tg OCD đều
=> CD = CO
mà tg ODC đều nên DB là đường phân giác đồng thời là đường trung tuyến
=> OB= BC
CD= CO = OB+BC
mà OB = BC ( cmt )
=> CĐ= CƠ = 2CB = 2.3 = 6 ( cm )
Chu vi của hình thang cân ABCD là
AB+BC+AD+CD = 3+3+3+6= 15 (cm )
Hình thang cân ABCD có đường chéo DB vuông góc với cạnh bên BC, DB là tia phân giác của góc D. Tính chu vi của hình thang, biết BC=3cm
Hình thang cân ABCD có đường chéo DB vuông góc với cạnh bên BC, DB là tia phân giác của góc D. Tính chu vi của hình thang biết BC = 3cm ?
Bài 33 '' Hình thang cân ABCD có đường chéo DB vuông góc với cạnh bên BC,DB là tia phân giác của góc D. Tính chu vi của hình thang, biết BC= 3cm
Hình thang cân ABCD có đường chéo DB vuông góc với cạnh bên BC, DB là tia phân giác của góc D . Tính chu vi của hình thang , biết BC= 3cm
hình thang ABCD
=> AD=BC = 3cm ( định lí 1 )
AB//CD ( ABCD là hình thang cân )
=> góc B1 = góc D2 ( SLT )
góc D1 = góc D2 ( gt )
=> góc B1 = góc D1
=> tg ABD cân tại A
=> AD=AB= 3cm
tg DBC vuông ở B
hình thang cân ABCD
=> góc D = góc C
2 lần góc D1 = góc C
=> góc DBC = góc D1 + 2 lần góc D1 = 90 độ
3 lần góc D1 = 90 độ
=> góc D1 = 900 : 3
= 300
=> góc C = 900 - góc D1 = 900 - 300 = 600
Gọi DA giao CB tại O
tg ODC có DB là pgiác
BD vuông góc với Oc
=> tg ODC cân ở D
lại có góc C = 60 độ
=> tg OCD đều
=> CD = CO
mà tg ODC đều nên DB là đường phân giác đồng thời là đường trung tuyến
=> OB= BC
CD= CO = OB+BC
mà OB = BC ( cmt )
=> CĐ= CƠ = 2CB = 2.3 = 6 ( cm )
Chu vi của hình thang cân ABCD là
AB+BC+AD+CD = 3+3+3+6= 15 (cm )
hình thang cân ABCD ( AB// CD) có đường chéo DB vuông góc với cạnh bên BC< DB là tia phân giác của góc D. Tính chu vi hình thang, biết BC=3cm
Hình thang cân ABCD có đường chéo DB vuông góc với cạnh bên BC, DB là tia phân giác của góc Đ. Tính chu vi của hình thang, biết BC=3cm
Hình thang cân ABCD có đường chéo DB vuông góc với cạnh bên BC, DB là tia phân giác của góc Đ. Tính chu vi của hình thang, biết BC=3cm
Theo đề bài ABCD là ht cân đáy AB//CD =>AD=BC=3cm (cạnh bên htc với BC=3cm-gt)
Kẻ BE//AD (E thuộc CD) thì tứ giác ABED là hbh (2 cặp cạnnh //).
Hình bh đó có đ/chéo DB cũng là phân giác góc D (gt) nên hbh ABED là h/thoi =>DE=AB=BE=AD=3cm và AE vuông góc BD (tính chất 2 đ/chéo h/thoi)
Vậy AE//BC (cùng vuông góc với BD) nên tứ giác ABCE cũng là hbh (2 cặp cạnh //).
Hình bh đó có AB=BC nên hbh ABCE là h/thoi => CE=CB=3cm
Mặt khác tam giác BCE có BC=CE=EB=3cm nên tam giác BCE là tam giác đều
=> góc CBE=60o < góc CBD=1v (gt) => tia BE nằm giữa 2 tia BC,BD => điểm E nằm giữa 2 điểm C,D => CD= CE+ED=3cm+3cm
Vậy chu vi htc ABCD=5.3cm=15cm